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ABSTRACT 
In this work, we study string-based approaches for the 
problem of RNA-Protein Interaction (RPI). We apply 
string algorithms and data structures to extract effective 
string patterns for prediction of RPI, using both sequence 
information (protein and RNA sequences), and structure 
information (protein and RNA secondary structures). This 
led to different string-based models for predicting 
interacting RNA-protein pairs. We show results that 
demonstrate the effectiveness of the proposed string-
based models, including comparative results against state-
of-the-art methods. 

General Terms 
Algorithms, Theory  

Keywords 
RNA protein interaction; RPI; k-mers; suffix trees; richness. 

1. INTRODUCTION 
The interaction between proteins and RNA is known to be 
an important cellular process. RNA interaction with 
malfunctioning proteins has been implicated in cell 
misregulation, leading to serious diseases [1, 3]. Yet, we 
still lack a complete understanding of the characteristics 
of a protein or of an RNA that allow them to interact. 
Even less is known about those characteristics that play a 
significant role in the formation of new protein-RNA 
complexes. Various groups have thus studied interactions 
for specific pairs of protein and RNA, even without 
knowing the general properties that facilitate or inhibit 
such interactions. Starting with experimentally known 
interacting RNA-protein pairs, computational methods, 
such as machine learning can be brought to bear on the 
problem, by attempting to predict possible RNA-protein 
interactions based on information from the already 
known interacting RNAs and proteins [2, 3]. 
 

The protein or RNA secondary structure 
describes how the molecules are bound together in a three 
dimensional space, and therefore can play a crucial role in 
characterizing the interaction process.  The RNA 
secondary structure describes how some nucleotides in 
the single stranded RNA are paired to form potentially 
complicated structures, such as stems, loops, and hairpins. 
Some methods have been developed to predict RNA 
secondary structure based on the nucleotide sequences. 
Thermodynamic methods are the most popular amongst 
these methods [4, 5]. These mainly rely on the notion of 
free energy, and building secondary structures based on 
the minimum free energy principle [4]. On the other 
hand, protein secondary structures describe how the 
amino acids are positioned in a three dimensional space. 
Various approaches have been used to describe the 
protein secondary structure. A popular approach is by 
using the dihedral angles (φ and ψ) between the amino 
acids. Dihedral angles define the angles of rotation 
between two planes, in this case, the planes are defined by 
the bonds between three adjacent amino acids [6]. 
Ramachandran codes are derived from Ramachandran 
plots (which are 2D charts describing the distribution of 
the dihedral angles), by reducing information in the plot 
to some clusters [6, 7, 8]. Another approach is the protein 
blocks, which describe protein secondary structures based 
on the folds formed by five consecutive amino acids and 
then clustering these folds [9].  

Earlier methods for RNA-Protein interaction 
prediction focused on sequence data, building features 
based on only sequence information, for RNA and protein 
individually, or combining both sequences to extract 
representative features [3]. Recently, secondary structures 
were shown to be important in the interaction process, 
and are now being included in the prediction [10]. In this 
work, we consider different representations for proteins 
and RNAs. We consider sequence and structural 
information for both protein and RNA. For the sequences, 
we use the traditional 4-letter alphabet for RNA (A, C, G, 
U), but a 7-letter reduced alphabet for protein. For 
structures, we use the Ramachandran codes for protein 
structure representation. These have been used in 
previous work on studying protein structures [6, 7]. 
However, this work represents the first time 
Ramachandran codes are being used for protein-RNA 
interaction studies. RNA secondary structures have been 
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used earlier in RNA alignment and Protein-RNA 
interaction prediction. In this work, we consider string-
based representations for both the RNA secondary 
structure, and the protein secondary structure, in addition 
to the traditional protein and RNA sequences. 

Armed with these representations, we build two 
different prediction models using a string-based approach. 
Here, we built a feature space based on k-grams (i.e., k-
length substrings, also called k-mers in the biology 
literature). We analyze the sequences of Protein-RNA 
pairs to determine the k-mers that tend to appear in 
interacting pairs, and those that are often found in non-
interacting pairs. We then used these k-mer pairs as our 
descriptors (feature set) for predicting RNA-protein 
interaction. We applied this approach on both sequence-
based information and structure-based information, after 
representing the structural information as strings.   

The reminder of this paper is organized as 
follows: Section 2 provides some background, and 
discusses previous work on predicting Protein-RNA 
interaction. Section 3 describes the proposed string-based 
approach. Section 4 presents the results, including 
comparison with the state-of-the-art. Section 5 concludes 
the paper.  

2. BACKGROUND & RELATED WORK 
The importance of RNA-Protein interaction comes from 
the key role it plays in regulating cellular processes. 
Researches have shown interest in RNA-Protein 
interactions primarily driven by the need to understand 
how cells work, including cell localization and other 
fundamental processes [10]. Studies have shown that 
some cases of RNA-Protein interaction are related to some 
important diseases [1]. Clearly, the problem of prediction 
is closely related the issue of representing the RNAs and 
proteins. Success in identifying and extracting the 
information that is most relevant to protein-RNA 
interaction will no doubt lead to improved computational 
prediction of such interactions.  

Methods for addressing the RNA-Protein 
Interaction (RPI) problem can be traced to those that have 
been used to study the related problem of protein-protein 
interaction (PPI). The Protein-Protein interaction problem 
is well studied due to the importance of proteins in all cell 
processes, including coding and decoding genes. Shen et. 
al [11] were among the first to predict protein-protein 
interaction using only sequence information. They used a 
simplified 7-character alphabet to represent protein 
sequences and built a Support Vector Machine (SVM) 
prediction model using a high quality database containing 
16,443 experimentally validated entries. They were not 
only able to predict Protein-Protein interaction, but also to 
build a protein interaction network that shows the 
relationships and connections between different proteins 
based on their interactions [11]. For other related work on 
protein-protein interaction see [12, 13, 14]. 

Muppirala et. al. [3] explored RNA and protein 
sequences separately. They build a 599-dimensional 
feature space, with 343 features extracted from protein 
and 256 features from RNA. Similar to Shen et. al. [11], the 
343 protein features were extracted by first considering 
the 7-class reduced protein alphabet, whereby the 20 
amino-acids are clustered into 7 groups based on their 
dipole moments and their side-chain volumes. To 
conserve locality information, the notion of triads was 
used to extend the feature space to 7x7x7 features for 
protein, and 4x4x4 features for RNA. Two classification 
models (SVM and Random Forests) were deployed to build 
the prediction scheme. The models were trained using 
two datasets, namely, RPI369 and RPI2241. The Random 
Forest model trained with RPI2241 obtained the most 
accurate results among other trained models, achieving 
89.6% in accuracy, with 0.89 and 0.90 for precision and 
recall, respectively. 

In [15], Wang et. al. applied k-mer approach by 
finding the pairs of protein amino acids and RNA 
nucleotides that tends to appear together. They worked 
with a reduced protein alphabet, the 20 amino acids were 
grouped based on their charge and polarity. The new 
alphabet consisted of 4 groups representing the 20 amino 
acids. Then, they considered protein 4-mers and RNA 3-
mers. This allowed them to preserve some locality 
information, which was indicated to have high impact on 
the prediction process. The feature space consisted of a 
4094-dimensional space (43 features for protein, and 43 
features for RNA). This high dimensional space requires 
relatively large datasets for training. Thus, they selected 
only 500 features that showed the highest impact on the 
prediction, and adopted the naive-Bayes classifier as the 
basic classification method. They tested the method on 
different datasets, including RPI369, RPI2241 and NPInter. 
The accuracy achieved for these three datasets were 75%, 
74% and 77.6%, respectively. 

RPI-Pred [10] was developed by Suresh et. al. to 
predict the interaction between non-coding RNA and 
proteins. They included information from both sequences 
and secondary structures, building a features-vector of 132 
features. Here, they used 20 features to describe the RNA 
considering 4 different nucleotides and 5 secondary 
structure elements including stem, hairpin, loop, bulges. 
They used 112 features to characterize proteins, following 
the reduced 7-class alphabet for amino acids, and the 
extracted 16 protein blocks [9]. They introduced a new 
dataset, namely, RPI1807 and used this for training. They 
tested their method using three datasets, namely, RPI369, 
RPI2241 and NPInter. Using SVM as the prediction 
scheme, they achieved an accuracy of 92%, 84% and 86.9% 
using RPI369, RPI2241 and NPInter, respectively. 

Lu et. al. [16] followed a different approach in 
predicting RNA-Protein interaction. The core difference in 
their work is in how they extracted their features. RNA 
secondary structures were predicted using Vienna RNA 



package. Additionally, they used hydrogen bonding 
information, then using the Fourier transform they 
extracted a feature set for both RNA and protein to form 
the feature vector for each RNA and protein. They 
included the first ten terms of the Fourier series for each 
information type. They built a training dataset containing 
649 non-redundant protein-RNA pairs (322 of these were 
interacting pairs, and the remaining 327 were non-
interactive pairs). They trained a scoring matrix which 
gives a score for each protein-RNA pair. Based on the 
assigned score, they predict the interaction between 
protein and RNA. The method achieved a 77% accuracy on 
the NPInter dataset. 

Recently, the problem of RNA-Protein interaction 
has been considered from the viewpoint of complete 
structural representations. Zhang et al. [17] developed a 
deep learning model to define the preferences of RNA 
Binding Protein (RBP) structural representations. They 
used information from predicted RNA tertiary structures 
to study the problem of RNA-Protein interaction. This 
helped them to define a 3D representation for RPI 
complexes, which were then used to describe the binding 
preferences.  

For both RNA and protein, their sequences and 
secondary structures can each be expressed in the form of 
strings [18, 19]. In this work, we take advantage of 
efficient string algorithms and data structures to extract 
discriminative feature sets and build prediction models 
that can predict RNA-Protein interaction. The other 
contribution is the development of a prediction model 
built on Ramachandran codes for protein structures, and 
enhanced descriptors of RNA secondary structure 
elements. In this work, we used both Support Vector 
Machines (SVM) and Random Forests (RF) to explore the 
influence of classification schemes on the prediction 
performance. 

3. STRING-BASED MODELS  
In this work, we will use information from both sequences 
and secondary structures. Before we discuss our string-
based approach, we first describe how the information 
from the protein and RNAs are represented.  

3.1 Representing RNAs 
For RNA sequences, although a nucleotide can be any of 
A, U, C and G nucleotides, some RNAs are not completely 
known and they include X at some positions denoting that 
the nucleotide at this position is unknown, therefore the 
alphabet for RNA sequences is extended to 5 characters 
(A, U, C, G, X). This alphabet will be used to encode RNA 
sequences in this work.  We also use information from the 
RNA secondary structure. In this work, when the RNA 
structure is unknown, we will use RNAFold (part of the 
Vienna RNA suite of programs [4, 20]) to predict the 
structure. The method implements a free energy model to 
predict the secondary structure for a given RNA sequence. 
To describe the RNA secondary structure, we use the RNA 

secondary structure elements (SSE)  -- see Figure 1 (taken 
from [18]). For simplicity, we consider only the five basic 
types, namely, Single strands, Stem (or stack), Loop, 
Internal Loop and Bulges. The RNA secondary structure is 
thus represented as a string -- sequence of basic SSEs.  

 

Figure 1: RNA secondary structure elements [18]. 

3.2 Representing Protein 
Given the chemical similarity between amino acids, we 
can group amino acids into different groups and use the 
groups, rather than the individual amino acids, to 
represent protein sequences. Grouping the amino acids 
can be done based on various criteria. In this work, we 
follow [3, 10], where amino acids were classified based on 
their dipole moments and their side chain volumes. This 
way the original 20 amino acids are be classified into 7 
groups:  I: {Ala, Gly, Val}, II: {Ile, Leu, Phe, Pro}, III: {Tyr, 
Met, Thr, Ser}, IV: {His, Asn, Gln, Trp}, V: {Arg, Lys}, VI: 
{Asp, Glu} and VII: {Cys}. The protein secondary structure 
is defined by the positions of consecutive molecules in 3D 
space. The positions can be described by the dihedral 
angles between each three consecutive molecules, denoted 
Omega (ω), phi (φ) and psi (ψ). Due to the limitation in ω 
angle, usually only φ and ψ angles are considered in 
describing the protein secondary structure. Ramachandran 
et. al. [21] studied the relationship between φ and ψ and 
presented 2D plots (now called Ramachandran plots), 
showing the density of the joint occurrences of these 
angles. This density can be used to derive protein 
secondary structure representations by clustering the 
values from the Ramachandran plot, then replacing the 
values of (φ, ψ) pairs by their cluster representative. To 
represent protein structure, Suresh et al [10] used 16-
character protein blocks. In this work, we will use a 7-
symbol alphabet representing 7 clusters from the 
Ramachandran plot. See [6, 7]. Hence, the protein 
representation used will consist of a 7-character alphabet 
for amino acid groups (for the sequence), and another 7-
character alphabet from the Ramachandran codes (for the 
protein secondary structure). 

3.3 String–based Approach 
Although the feature-based approach is powerful and 
contains a lot of information about RNA and protein, it 
does disregard important local information. This local 
information could be important in the prediction process. 
When an RNA bonds to a protein, it is not just an amino 
acid and a nucleotide that are involved, but a set of 
neighboring nucleotides against a set of amino acids. 



Furthermore, the secondary structures should be 
compatible to allow RNA-Protein bonding. These 
observations suggest that we could consider small 
portions or k-grams (k-mers) of sequences and structures 
when building the feature vector rather than looking for 
individual molecules.  This will typically lead to a very 
large dimensional feature space. Consider for instance, the 
5-mer strings under a 25-character alphabet (using the 
RNA representation presented earlier). This means we 
have more than 255  9.8×106 possible different 5-mers to 
consider for RNA only, besides the 495  2×108 5-mers for 
proteins. This is a huge feature space that will be very 
difficult to handle with current computational limitations. 
Thus, we need to reduce the feature space dimensionality. 
A quick observation is that this feature space will be very 
sparse, as most combinations of the RNA and protein 
symbols will not occur in practice. 

Reducing feature space dimensionality means we 
need to carefully select some k-mers and drop the rest. 
Not all k-mer strings hold the same amount of 
information. Thus, to enhance prediction accuracy, we 
need to identify the k-mers that have the most influence 
on the prediction of interacting or non-interacting RNA-
protein pairs. Hence, we look for the k-mer strings that 
appear mostly in the positive pairs and those that appear 
mostly in the negative pairs, and then construct a feature 
vector based on these. 

3.4 Suffix trees for protein and RNA strings 
The naive approach to find the most occurring substrings 
is to count each of them within the dataset. The running 
time for this approach will be O(nk) for each k-mer, where 
n is the total number of all characters in the dataset. This 
means we need to hold a large dictionary of all possible 
substrings, the size of this dictionary would be in O(αk), 
where α is the alphabet size (in our case, α=25 for RNA 
and α=49 for protein). We need to find a better approach 
to study the distribution of k-mers, i.e. a memory- and 
time-efficient method to find the k-mers that contribute 
most in the interaction process. An improved approach 
will be to go over the database to first determine all the k-
mers that actually occurred, and then use standard linear-
time pattern matching algorithms to determine their 
respective number of occurrences. Overall, this will be 
O(kn2) time worst case.  

A better approach will be to use suffix trees and 
suffix arrays [19, 22-25] to provide a better tool to find the 
most occurring substrings within positive pairs and 
negative. The suffix tree requires an O(n) time and space 
for construction. After construction, we can traverse the 
O(n) nodes of the suffix tree to determine the occurrence 
counts of all substrings in O(n) time. Thus, this is the time 
required to count all the k-mers in the string, independent 
of k. The power in using the suffix tree to find the 
distribution of k-mers is that we don’t need to maintain a 
large dictionary. We built suffix trees counting 

occurrences of each substrings of length 2 to 5 for RNA 
sequence and secondary structure, and protein sequence 
and secondary structure. That is, we constructed four 
suffix trees, one for each type of string representation we 
used, namely: RNA sequence, RNA secondary structure 
elements represented as strings, protein sequence, protein 
secondary structure represented as a sequence of 
Ramachandran codes. 

3.5 Richness for protein and RNA 
substrings 
In general, the k-mers that tend to occur more in positive 
pairs (i.e., interacting RNA-protein pairs) would provide 
more information in deciding on a positive pair than other 
k-mers that appeared equally in both positive and 
negative pairs. Similarly for k-mers that appeared more in 
negative pairs.  With this observation, we should look for 
more than just occurrence counts. The richness could be a 
better measure of the contribution of a k-mer to the 
interaction between RNA-protein pairs. Given a k-mer, 
say β, let:  

γ+(β) = #occurrences of β in the positive pairs. 
γ-(β) = #occurrences of β in the negative pairs.   

The k-mer richness is simply defined as:  
R(β) = (γ+(β)+1)/(γ-(β)+1). 

Thus, k-mers with richness greater than 1 appear more in 
positive pairs (positive k-mers), while a richness value 
near zero means the k-mer appeared mostly in the 
negative pairs (negative k-mer). Richness values close to 1 
are associated with k-mers that appear equally in both 
positive and negative pairs, hence they provide less 
discrimination ability between interacting and non-
interacting pairs.  

Given the foregoing, we now construct four 
suffix trees for positive dataset, and another four suffix 
trees for the negative dataset. We extracted pairs that 
appeared only in positive pairs or only in negative pairs as 
they hold the most discriminative information for 
interaction prediction.  To provide some perspective on 
the feature space generated, we used the RPI1807 dataset 
(see Section 4.1 on datasets), to build suffix trees of depth 
five and computed the distributions for k-mers up to 
length 5. RNA 4-mers appeared for as many as 18,020 
times in positive pairs and 16,894 in negative pairs, while 
for 5-mers, the number drops to 3,700 appearances in 
positive pairs and 3,494 negative pairs. Obviously, the 
numbers drop as the k-mer length increases. Protein 4-
mers occurred about 1,134 times in positive pairs, and 443 
times in negative pairs.  As mentioned, the direct k-mer 
count distribution may not be the best way to capture the 
information carried by the k-mers. Thus, we considered 
the richness as the main factor to compare k-mers and 
build the feature vector.  Figure 2 shows the RNA k-mer 
richness (log scale) for the RPI1807 dataset above. In this 
chart, positive log values imply k-mers that appear more 
in the positive pairs, while negative values correspond to 



those that appear more in the negative pairs. Thus, a 
simple threshold can be used to select the positive k-mers 
and the negative k-mers, while avoiding those that are 
less discriminative (those close to 0). 

3.6 String-based Models  
Based on the foregoing, we then consider string-based 
prediction models that combine the extracted RNA and 
protein k-mers. Our models consider different 
combinations of the identified k-mers that pass the 
richness threshold.  We consider 5 models based on these 
combinations, viz: QQ: RNA sequence k-mers in 
combination with protein sequence k-mers; SS: RNA 
secondary structure k-mers and protein secondary 
structure k-mers, QS: RNA sequence k-mers and protein 
secondary structure k-mers, and SQ: RNA secondary 
structure k-mers and protein sequence k-mers. The final 
model (QSQS) combines k-mers from the first four models, 
thus exploiting info from RNA sequence, and RNA 
structure, protein sequence, and protein structure.   

 

Figure 2: RNA sequence k-mer richness (log values)  
using the RPI1807 dataset. Not all k-mers are 
shown. 

4. EXPERIMENTS & RESULTS  

4.1 Datasets and Setup 
We performed experiments to test the performance of the 
proposed methods, using some known datasets. 
Classification was performed using both SVM and 
Random Forests (RF) using Weka, version 3.6.13.  SVM 
parameters were set as C=25, γ=2-7 for the string-based 
models.  For RF, the number of decision trees was set to 
200. We used the RPI1807 dataset from [10] to construct 
our models, and set parameters. The dataset has 1,807 
positive pairs (1807 protein and 1078 RNA chains), and 
1436 negative pairs (including 1436 protein and 493 RNA 
chains).  Then, we evaluated the models on the RPI369 
and RPI2241 datasets reported in [3]. Both were obtained 
from the PRIDB dataset of RNA-protein complexes [26] 
extracted from the protein databank (PDB). RPI2241 
includes complexes with rRNA, ncRNA and mRNA, and 
this is more challenging. 

4.2 Performance Measurement 
We evaluated our approaches using 10-fold cross-
validation. To measure the performance, we used 
precision (PRE), recall (REC), accuracy (ACC), and F-
measure (FSC), viz: PRE=TP/(TP+FP), REC=TP/(TP+FN), 
ACC=(TP+TN)/(TP+TN+FP+FN), FSC=2*(PRE*REC)/ 
(PRE+REC), where, TP is true positive (the count of 
correctly classified positive pairs), FP is false positive (the 
count of wrongly classified positive pairs), TN is true 
negative (count of correctly classified negative pairs), and 
FN is false negative (count of wrongly classified negative 
pairs). We also computed the area under the curve (AUC) 
(with values in [0 1], with 1 indicating perfect prediction). 

4.3 Results 
Table 1 shows the results of our proposed string-based 
models. Columns 2 and 3 show results for the QSQS 
model, using both SVM and RF. Clearly, RF is doing much 
better than SVM using our approach. Thus, subsequent 
results in this work are reported only for the RF classifier. 

Table 1: Results for the proposed string-based 
models  
Metric QSQS 

(SVM)
QSQS 
(RF) 

QQ SS QS SQ 

#k-mers  7,030 7,030 4,680 2,350 3,255 2,955 

AUC 0.75 0.98 0.93 0.66 0.64 0.95 

PRE 0.79 0.93 0.93 0.79 0.78 0.91 

REC 0.74 0.93 0.93 0.67 0.65 0.89 

FSC 0.73 0.93 0.98 0.61 0.58 0.89 

ACC (%) 74.00 93.35 93.19 66.98 65.15 89.29 

As expected, the QSQS model achieved the best result. 
This is due to its use of more detailed information from 
both structure and sequence. The results of using only 
sequences (QQ model) were very close to using all 
available info. This could be due to the fact that secondary 
structure is determined by the sequence. Interestingly, 
using k-mers from only the secondary structures (SS 
model) led to a significant performance drop 
(ACC=66.98%). The table shows that sequences provide a 
key information for RPI prediction. Though secondary 
structures can help when combined with sequences, they 
lack precision when used independently. 

4.4 Comparison with State-of-the-Art  
We compared our models with two recent approaches 
reported in [10] and [3]. Table 2 shows the comparative 
results using the RPI2241 dataset. Our string-based model 
(QSQS) had an accuracy of 86.5%, performing better than 
RPI-Pred (84.0%) and close to RPISeq-SVM (87.1%).  

 

 



Table 2: Comparative analysis of proposed 
string-based models on RPI2241 dataset 
Metric String

-
Based 

RPI-
Pred[10] 

RPISeq-
SVM[3] 

RPISeq- 
RF [3] 

AUC 0.92 0.89 0.97 0.92 

PRE 0.86 0.88 0.87 0.89 

REC 0.86 0.78 0.88 0.90 

FSC 0.86 0.83 0.87 0.90 

ACC (%) 86.5 84.0 87.1 89.6 

Table 3 shows the results when using the RPI369 dataset. 
The string-based method outperformed all three 
competing methods (ACC= 96.38%). The proposed models 
were more consistent over different datasets. Our string-
based had an accuracy of at least 86.52% over each dataset.  

Table 3: Comparative analysis of proposed 
string-based models  on RPI369 dataset 
Metric String-

Based 
RPI-
Pred[10] 

RPISeq-
SVM[3] 

RPISeq- 
RF [3] 

AUC 0.98 0.95 0.81 0.81 

PRE 0.96 0.89 0.73 0.75 

REC 0.96 0.89 0.73 0.78 

FSC 0.96 0.89 0.73 0.77 

ACC (%) 96.38 92.0 72.8 76.2 

5. CONCLUSION  
We have introduced different string-based models for 
predicting RPI. We used the Ramachandran codes to 
represent protein secondary structure, and developed an 
innovative k-mers approach using powerful string data 
structures to address the problem of RPI prediction. The 
string-based approach maintained locality information 
which plays a key role in interaction between RNA and 
protein. Our approach showed comparable performance 
with the state-of-the-art methods on one dataset, while 
outperforming the methods on a second dataset.  

Further improvement could be obtained by 
finding better ways to integrate the sequence and 
structure information, and intelligent fusion of the 
feature-based and string-based approaches. The string-
based approach can also explore longer substrings (the k-
mers), or perhaps inexact k-mers. Computing the k-mer 
richness by considering the sequence and structure 
information jointly, rather than separately, could lead to 
further improvements.  
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