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Abstract—Time series predictions are important for various
application domains. However, effective forecasting can be chal-
lenging in noisy contexts devoid of time series data encompassing
stationarity, cyclicality, completeness, and non-sparseness. Cyber-
security is a good example of such context. In organizational
security settings, predicting time series related to emerging
attacks could enhance cyber threat intelligence, resulting in
timely and actionable insights at the operational, tactical, and
strategic levels. In order to explore this gap, we propose a deep
generative model-based framework for time series forecasting in
noisy data environments. The proposed framework incorporates a
novel ensembling strategy where generative adversarial networks
and recurrent variational autoencoders are leveraged in unison
with base predictors for enhanced regularization of time series
predictive models. The framework is extensible, supporting
different model combinations and analytical or iterative model
fusion strategies. Using a test bed encompassing 10 years of
weekly phishing attack volume data from 5 organizations in
the technology, financial services, and social networking sectors,
we show that the framework can boost predictive power for
various standard time series models. Additional results reveal
that the framework outperforms generative data augmentation
approaches designed to enrich the input time series data matrices.
Collectively, our findings suggest that utilizing generative models
in more robust end-to-end setup can improve prediction in cyber
threat intelligence contexts, as well as related problems involving
challenging time series data.

Index Terms—Time series modeling, generative adversarial
networks, variational autoencoders, phishing, cyber threat in-
telligence, cybersecurity, deep learning, predictive analytics.

I. INTRODUCTION

Time series modeling is important for proactive forecasting
and situational awareness in many contexts ranging from sales
and finance to health policy, environmental planning, eco-
nomics, and cybersecurity. However, whereas time series data
in many contexts exhibits characteristics such as seasonality,
cyclicality, completeness, stationarity, and non-sparseness, the
stochastic processes that underpin time series data in certain
application domains are often devoid of these properties [1].
In these domains, classic statistical and machine learning
methods for time series modeling are often less effective.
Cybersecurity is a good example of this; the quantity and
severity of attacks experienced by an organization over time
might look very different in terms of shape and structure
relative to its primary performance metrics such as sales,
expenses, inventory, growth, equity, etc.

In organizational security contexts, cyber threat intelligence
(CTI) has emerged as an analytics-driven approach to devel-
oping timely and actionable insights about emerging threats
and/or key actors [2], [3]. Predictive analytics applications
of CTI include detection of hacker assets [4], [5], system
and device vulnerabilities [6], [7], phishing threats [8], and
susceptible users [9]. From a CTI perspective, the ability to
forecast near-term threats — such as phishing attacks and
intrusion detection attempts in the coming days and weeks
— could complement this existing body of work by affording
opportunities for proactive mitigation strategies at the opera-
tional, tactical, and strategic levels.

In order to explore this gap in time series modeling, we
propose the use of generative models as a mechanism for
enhanced forecasting in noisy, sparse data environments. Our
proposed deep generative model (DGM) framework incorpo-
rates a novel ensembling strategy where generative adversarial
networks (TimeGAN) and recurrent variational autoencoders
(RVAE) are leveraged in unison with base predictors for
enhanced regularization of time series predictive models.
The framework, which is designed to boost performance for
many/most baseline time series models, also allows fusion of
multiple predictions through least-squares solution (LSS) or
MergeNet, thereby supporting use of analytical or iterative
prediction aggregation.

Using a test bed encompassing 10 years of weekly phishing
attack volume data from 5 organizations in the technology,
financial services, and social networking sectors, we show
that the framework can improve prediction for various models
such as ARIMA, linear and ridge regression, random forest,
multilayer perceptrons (MLPs), and long short-term memory
(LSTM) recurrent neural networks. Additional results show
that the framework outperforms generative data augmentation
approaches designed to enrich columns or rows of the input
time series data matrix — suggesting that use of generative
models in more robust end-to-end learning frameworks can
further improve forecasting in challenging time series con-
texts. Our results have important implications for phishing
prediction, future work examining proactive uses of predictive
analytics for cyber threat intelligence, as well as research in
broader application domains involving complex, noisy time
series data.
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Fig. 1: Illustration of Restructurer block, used to restructure
univariate time series of length T to obtain N lag features and
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II. RELATED WORK AND PROBLEM FORMULATION

Prior CTI work in the predictive analytics space has focused
on detecting emerging threats and/or identifying threat actors.
Previous threat detection studies include ones on identification
of hacker assets [5], [10], [11], detecting vulnerable cyber-
physical systems [12], uncovering attack vectors in malicious
source code [13], identifying and categorizing phishing web-
sites [14]–[16], detecting attack servers [17], and creating
digital traces of attacks [18], [19]. Threat actor-related work
has examined how to predict or detect key actors [20]–[22],
identifying and understanding users most susceptible to attacks
[23], and predicting vulnerable employees [9].

While significant research has focused on the detection
problem in CTI contexts, work concerned with time series
forecasting in the cybersecurity domain remains limited. Some
prior studies used social media data and activity levels as a
predictor for future distributed denial of service and other
cyberattacks [24], [25]. The standard approaches used are
methods such as ARIMA, regression methods, feature-based
machine learning classifiers, and recurrent neural networks
such as LSTMs [26]–[28]. The lack of stationarity or cycli-
cality, incompleteness, and sparseness, however, have posed
challenges for effective forecasting in CTI contexts. Some of
these challenges are also prevalent in health and policy do-
mains, making solutions for more robust time series modeling
in complex, noisy contexts an important research gap [1].

The time series forecasting problem can be formulated as
a windowed training-testing split with temporally earlier data
instances used to predict future outcomes. In addition to the
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Fig. 2: Illustration of train-test split for time series data.

windowed training and testing, restructurer blocks are used
to generate “windowed” feature columns, for instance, attack
volumes in each of the past � weeks being used as the features
to forecast attack volume in the next week. Fig. 1 shows how
a restructurer block can be used to construct such a windowed
feature data matrix. Fig. 2 shows the restructurer block within
the broader windowed time series training-testing split context.

To address gaps in time series modeling and forecasting
in challenging contexts, we believe generative models provide
one promising avenue. Generative models are concerned with
approximating an underlying data distribution given access
to a finite set of samples from it. The end goal is often to
have instances or columns that are characteristically similar
to the real ones. Deep generative models utilize deep learning
towards attaining this goal. While multiple DGMs have been
proposed including Generative Adversarial Networks (GANs),
Variational Autoencoders (VAEs), Deep Boltzmann Machines
and Normalizing Flows, we limit our discussion to the former
two, which are also the most popular ones. Through this
selection, we remain concise in our analysis while gaining
benefits associated with the said models’ popularity (known
efficacy on numerous problems, vast reach/impact, active area
of research, etc.). Still, our proposed framework is generic and
extensible, and can easily accommodate other models too.

There has been limited recent work on generative models
for forecasting, with most of those studies using GANs. The
two most common tactics have been data augmentation via
instance generation and feature generation. Instance generation
methods use GANs to demonstrate their efficacy for row-
generation based augmentation [29]–[31]. For example, [31]
utilized synthetic, generated training data applied to real test
instances to illustrate usefulness of the augmentation-based
instances. Other work has focused on use of data augmentation
strategies to construct new columns of data, or generated
multivariate time series features [32]–[34]. This approach
entails simulating a prediction horizon and having a generator



(a) Instance Augmentation (b) Feature Augmentation (c) Generative Ensembling

Fig. 3: Three possible utilizations of generative models in time series contexts. Generative models have been used for instance
augmentation (a) or feature augmentation (b). We propose a DGM generative ensembling framework (c) that emphasizes
inclusion of ensembles of predictors trained on original data and one, as shown in (c), or more sets of generated data synthesized
using deep generative models, while also leveraging some aspects of instance and feature augmentation.

attempt to construct realistic feature columns using actual data
as input (as opposed to noise) or actual data in conjunction
with noise in the case of conditional GANs [32], [33]. In many
cases, these generated feature columns are coupled with the
original input to improve predictive power [35], [36].

Fig. 3 highlights these two data augmentation use cases
for generative models, namely use of GANs to create new
instance rows (Fig. 3a) or new feature columns (Fig. 3b).
Fig. 3c depicts the main intuition behind our proposed deep
generative modeling framework. We build on the prior GAN
data augmentation work by incorporating instance and feature
level augmention in conjunction with ensembling strategies.
Furthermore, we employ both GAN and recurrent variational
autoencoder (RVAE) and show that use of GAN and RVAE
in conjunction with base predictors can boost forecasting
performance. Finally, our framework is extensible with respect
to the choice of ensemble fusion strategies, allowing use of
analytical and iterative methods such as LSS and MergeNet.
Before describing our framework in greater detail, we provide
important background on the two types of generative models
employed in our DGM framework — GANs and VAEs.

A. Generative Adversarial Network

Generative Adversarial Networks estimate generative mod-
els through a process corresponding to a minimax two-player
game. The setup involves simultaneously training two models
with adversarial objectives: a generatorG that captures a data
distribution to generate real-like data and a discriminatorD
that distinguishes between real and generated data.

The generatorG(z; � g) can be modelled as a differentiable
function that maps input noise variablez 2 Z to data space
X , i.e., G : Z 7! X . On the other hand, the discriminator

D(x; � d) is a function that maps input from data space to the
probability that the input data is real, i.e.,D : X 7! [0; 1].
D is trained to maximize the probability of assigning correct
labels to both real and generated data.G is simultaneously
trained to minimizelog(1 � D (G(z)) , i.e., the probability of
the discriminator correctly identifying generated samples as
not real.

The zero-sum game can be framed as the following opti-
mization problem, which in practice is implemented using an
iterative, numerical approach:

min
G

max
D

Ex � pdata (x ) log [D (x)]+ Ez� pz (z) [log(1 � D (G(z))]

Our framework, described later in Section III, uses GANs
designed speci�cally for time series contexts.

B. Variational Autoencoder

Variational autoencoders have their roots in latent variable
models. We �rst introduce a latent variablez 2 Z that we
believe somehow encodes meaningful information about data
variablex 2 X . Given a set of observationsD, our objective
is to selectp 2 P x ;z that best explains the observed data.

Px ;z = f p(x; z) j p(z) 2 P z ; p(x jz) 2 P x jzg

One way to do this is by minimizing the Kullback-Leibler
(KL) divergence between the data distribution and the model's
marginal distribution, which is equivalent to maximizing the
marginal log-likelihood overD.

min
p2P x ; z

DKL (pdata (x)jjp(x)) = max
p2P x ; z

X

x 2D

logp(x)

= max
p2P x ; z

X

x 2D

Z
logp(x; z) dz



Fig. 4: Illustration of how DGM, TimeGAN or RVAE for instance, is used to generate time series using training data.

The problem, however, is intractable for high dimensionalz.
An alternative, then, is to �nd a lower bound that is easier
to optimize than maximizing the log-likelihood directly. We
thus introduce a variational familyQ of distributions that
approximate the true posteriorp(zjx). We further assume a
parametric setting where any distribution in the model family
Px ;z is parameterized by� 2 � and distributions in variational
family Q are parameterized by� 2 � .

logp� (x) = log
Z

p� (x ; z) dz

= log
Z

q� (zjx)
q� (zjx)

p� (x ; z) dz

�
Z

q� (zjx) log
p� (x ; z)
q� (zjx)

dz

=
Z

q� (zjx)
�
logp� (x jz) + log

p� (z)
q� (zjx)

�
dz

= Eq� (zjx ) [logp� (x jz)] � DKL (q� (zjx)jjp� (z))
(1)

We can now learn a latent variable model by maximizing
the evidence lower bound (ELBO) derived in (1), i.e., by
performing the following optimization:

max
�

X

x 2D

max
�

Eq� (zjx ) [logp� (x jz)] � DKL (q� (zjx)jjp� (z))

In variational autoencoders, the parameters� and � are
learnt using neural networks. The variational posteriorq� (zjx)
is often called the encoder while the generative modelp� (x jz)
is referred to as the decoder. Having provided an overview
of GANs and VAEs, in the subsequent section we describe
how our proposed framework utilizes variations of these two
types of generative models as part of the ensembling approach
alluded to in Fig. 3.

III. PROPOSEDFRAMEWORK

As noted in the prior section and highlighted earlier in Fig.
3, our deep generative model framework is geared towards
ensembling of base and generative models for time series

forecasting. Fig. 4 summarizes the data generation pipeline.
Having already discussed restructurer blocks (left side of the
�gure) and training matrix construction (right side of the
�gure), we focus on the center portion of Fig. 4 in this
section. We speci�cally discuss the time series GAN and
VAE models, and how these models' outputs are used with
base predictors for fusion later using analytical or iterative
aggregation techniques.

A. The Time Series Generative Modeling Process

As discussed in Section II, different generative models
have unique properties. We can learn to generate data points
by transforming noise (i.e., using GANs) or by learning a
latent distribution to sample from (i.e., through VAEs). VAEs
are distinct in that they can also be used to generate time
series more closely aligned with the original time series by
inputting the original data to the encoder. As we later show
empirically, and with visual illustrations, these differences in
the underlying intuitions and mechanisms for GANs versus
VAEs are a crucial driver for the success of the proposed DGM
ensembling framework in our phishing attack CTI context.

1) GANs for Time Series Modeling:For effective time
series generation, recent advancements in GANs for time
series data have been proposed [37]. For instance, TimeGAN
combines the �exibility of the unsupervised GAN framework
with control over conditional temporal dynamics afforded by
supervised autoregressive models. An embedding, and asso-
ciated recovery network, is introduced to provide reversible
mapping between features and latent representations while
reducing the high dimensionality of the adversarial learning
space, capitalizing on the fact that temporal dynamics are often
driven by factors aligned with lower dimensional variation.

Relying solely on the discriminator's binary adversarial
feedback, as captured by the unsupervised lossL U described
earlier in II-A, may not be be suf�cient incentive for the
generator to capture temporal dynamics in the data. Effectual
embedding and recovery functions are therefore learnt using
reconstruction lossL R in TimeGAN. The generator is trained
to �rst generate latent representation using noise coupled with



a temporally earlier latent representation, and an additional
supervised lossL S is introduced to further discipline learning.
Let � e; � r ; � g; � d denote parameters of the embedding, recov-
ery, generator and discriminator networks, respectively, and
and� be two hyperparameters. The optimization procedure is
as follows:

min
� e ;� r

( L S + L R )

min
� g

(� L S + max
� d

L U )

The losses are more formally described below.x, x̂ denote
actual and recovered features,y and ŷ correspond to whether
a sample is real or synthetic,h denotes latent representation,
z denotes noise, andg is the generator function implemented
using a recurrent neural network.

L R = Ex 1: T � p

X

t
kx t � x̂ t k2

L U = Ex 1: T � p

X

t
logyt + Ex 1: T � p̂

X

t

log(1 � ŷt )

L S = Ex 1: T � p

X

t
kh t � g(h t � 1; zt )k2

2) Recurrent Variational Autoencoder:To adapt VAE, as
outlined in II-B, for the time series context, a recurrent version
of VAE called RVAE is employed using principles from [38].
Parameters for the encoder and decoder networks are learnt
using recurrent neural networks, LSTM units more speci�cally.
In essence, RVAE can be thought of as encompassing a VAE
at every time step, and the objective function in (1) is updated
as such to obtain the following optimization problem:

max
�

X

x 2D

max
�

Eq� (z � T j x � T )

TX

t =1

h
logp� (x t jz� t ; x<t )�

DKL
�
q� (zt jx � t ; z<t )jjp� (zt jx<t ; z<t )

� i

It is worth noting that aside from using GANs and VAEs in
unison to leverage their varying strengths via ensembling, there
has been prior work on combining VAE and GAN models
in a single, parsimonious model often referred to as VAE-
GAN. The idea is to collapse the VAE decoder and the GAN
generator into one (and jointly training them) by letting them
share parameters [39]. As we later show, this approach does
not work as well for our time series context — though future
work could explore this idea in greater depth.

B. Ensembling Strategies

Once an ensemble of models run across real and/or gener-
ated data has output predictions, the next step in the framework
is to fuse or aggregate those predictions. In addition to simple
averaging, analytical and iterative methods can have varying
advantages and disadvantages for how ensembling or fusion of
predictions takes place. Accordingly, we discuss least-squares
solution (LSS) and MergeNet-based strategies.

Given forecasts bym models of lengthn each, we want
to �nd the weighted average of all forecasts that most closely
resembles the target time series, as expressed in (2).ŷ0 = 1

(vector of ones) always, and is introduced to include abias
term. The weights are decided attraining time. All predicted
(ŷ i ) and target (y ) values discussed here thus refer to those
obtained from training data, although this is not explicitly
stated in the ensuing notation, for convenience and readability.

w0ŷ0 + w1ŷ1 + w2ŷ2 + � � � + wm ŷm � y

Ŷw � y

ŷ � y (2)

wherewi 2 R, w = [ w0; w1; : : : ; wm ]| 2 Rm +1 , ŷ i 2 Rn ,
Ŷ = [ ŷ0; ŷ1; : : : ; ŷm ] 2 Rn � (m +1) andy 2 Rn .

1) Analytical Method (LSS):We more formally express
what close resemblance to target time series, as indicated in
(2), entails through our objective in (3).

w � = argmin
w

ky � ŷ k (3)

While the norm in (3) can be any valid norm, we select it to be
l2-norm to conveniently obtain optimal analytical solution. We
can see that the optimalŷ would be the orthogonal projection
of y onto (m + 1) -dimensional space spanned by columns of
Ŷ . With optimal weightsw � , the residual error(y � Ŷw � )
would consequently be orthogonal to every column ofŶ , i.e.,
(y � Ŷw � )Ŷ = 0, leading to

w � = ( Ŷ | Ŷ ) � 1Ŷ | y

The same is formally derived using matrix calculus in Eqs. (4)-
(10). We observe that this is really the least-squares solution
(LSS), which can be very ef�ciently computed using modern
algorithms. We assumêY to be full rank, for Ŷ | Ŷ to be
invertible. We further assumen > m , for Ŷ to be left
invertible, which is typically the case — the length of time
series is often much greater than the number of models. If this
is not the case, it can be shown thatw � = Ŷ | (Ŷ Ŷ | ) � 1y is
an optimal solution instead.

We thus usew � = Ŷ yy , where y represents the (left or
right, as appropriate) pseudo-inverse, as the analytical solution,
and refer to it asLSSwithout loss of generality. It is important
to note that while we use a linear combination of predictions,
this scheme is applicable much more widely, for example
we can also perform polynomial combination with degree2
using Ŷ 0 = [ Ŷ ; Ŷ � Ŷ ] instead ofŶ , where� denotes the
Hadamard product.

The major advantage of such an analytical, LSS-based
fusion strategy is that it provides the optimal weights for
predictions on the training data. That is, the root mean square
error (RMSE) between̂y train andy train is guaranteed to be
less than or equal to the RMSE obtained using any other
weights. Further, it can be computed ef�ciently ifn or m
are not extremely large. Conversely, as is often the case in
data mining, over-�tting is a possible challenge — the optimal
weights found using training data may not translate into ideal
weights for prediction on test data (which can be the case when
dealing with data that has limited stationarity). Further,Ŷ y can
be very expensive to compute for very high dimensionalŶ ,
since inverse computation is typically aO(n3) operation.



(a) Original (b) RVAE (c) TimeGAN (d) VAE-GAN

Fig. 5: Training data, comprising original time series and those generated by RVAE, TimeGAN and VAE-GAN.
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� 2Ŷ | y + 2 Ŷ | Ŷw � = 0 (9)

w � = ( Ŷ | Ŷ ) � 1Ŷ | y (10)

2) Iterative Method (MergeNet):Iterative methods offer
complementary pros and cons to analytical techniques such
as LSS. We use gradient descent for iterative optimization,
which can be implemented as a simple neural network. First,
all chunks of sizec are extracted, wherec � n, from ŷ i

and y , keeping time order intact (because thekth chunk of
eachŷ i , for example, would be weighted to closely resemble
the kth chunk of y ). We aim to minimize error in (11); for
convenience and readability,y refers to a associated chunk of
y and Ŷ contains the particular chunk of everŷy i . Weights
are updated iteratively using (13).� is the learning rate.

E =


 y � Ŷw





2

2
(11)

w = w � � r w E (12)

w = w � � (� 2Ŷ | y + 2 Ŷ | Ŷw ) * (7) (13)

This can be implemented as a single neuron neural network
with ŷ i s as inputs (number of data points equal to number of
chunks) with mean square error loss. Through this equivalence,
we can perform prediction aggregation through more complex
neural networks and choose other loss functions as needed.

In contrast to LSS, iterative methods such as MergeNet can
be ef�cient whenn and m are larger. By usingc < n , and
through iteration, the scheme is more likely to generalize to
test data and is capable of modeling many complex relations.

However, it also faces many of the classic neural network
limitations (run times, hyperparameters, etc.). Fig. 9 illustrates
this contrast between LSS and MergeNet performance, where
the latter is more effective when the train-test distributions are
less similar. We include both in our framework to allow the
DGM ensemble framework to be extensible for a myriad of
noisy, complex time series contexts, where one ensembling
strategy may be more suitable than the other.

IV. EXPERIMENTS

We evaluated our proposed DGM framework in a relevant
CTI context — predicting phishing attack volume. Our time
series data test bed was taken from the PhishMonger project
repository [19]. The PhishMonger time series repository in-
cludes over 1.5 million unique veri�ed phishing attacks related
to over 100 targeted organizations' websites across a 10 year
period from 2006 through 2015. We focus on �ve of the most
highly targeted organizations in the social media, �nancial
services, and internet sectors: AOL, Bank of America, eBay,
Facebook, and Wells Fargo. For each organization, weekly
phishing attack volume data is modeled as a time series, with
the �rst seven years used for training and the last three for
testing.

In order to provide a small visual illustration of what the
actual and generated data for these types of time series may
look like, Fig. 5 provides an example. The �gure shows
training data for AOL and Facebook. These two were chosen
for this particular �gure since they represent different industry
sectors. As noted, the TimeGAN generates samples from noise
that are not necessarily paired with equivalent real world
tuples. Hence, the structure of the generated data only captures
certain cyclical patterns and also appears noisy. In contrast, the
RVAE does not generate data simply by explicitly sampling the
latent distribution (N (0; 1) in our case). Instead, the original
data is input to the encoder, and the resulting decoder output
forms the RVAE generated data. As shown in the �gure, this
allows the VAE samples to be more closely aligned with
the real data in terms of distribution and structure, within a
Gaussian distributional framework. Further, we also include



Fig. 6: Boxplots for original and generated training data.

VAE-GANs to show that the RVAE might be more effective
than a simple end-to-end hybridization of VAEs and GANs.

Fig. 6 provides a more aggregated visual view of attack
distributions for all �ve organizations in our data set, excluding
the outlier spikes in the time series. From the �gure, we can
see that the shape/structure alignments observed earlier in Fig.
5 are also prevalent at the distribution level. Namely, RVAE
produces distributions that are more in sync with the original
data, whereas TimeGAN's output has more limited diversity
and seems less aligned with the original data. Interestingly,
it might seem that simply using the RVAE in conjunction
with the original data would be better than also including
TimeGAN in the mix. However, the inclusion of TimeGAN
adds robustness in results for many organizations, as we show
in the subsequent results.

A. Impact of DGM Framework on Performance

Table I and Table II show the overall results for the DGM
framework when boosting performance for six different pre-
diction methods (ARIMA, linear and ridge regression, random
forest, MLP, and LSTM) across the �ve organizational test
beds. In order to allow easier readability, we have aggregated
the 3-tuple, that is, three dimensional predictor-testbed-DGM
results, into two 2-tuples by predictor and organization. Look-
ing at the mean MAE and RMSE results by predictor (Table
I), we can see that the use of DGM boosts performance for
�ve of the six base predictors examined. The one exception
is random forest, where the base predictor not utilizing the
DGM framework outperformed the DGM-boosted predictions.
For methods such as ARIMA and LSTM, DGM reduced
prediction error markedly, by 10 to 15 percentage points.
Similarly, looking at the organization-level aggregated results
(Table II), we can see that DGM improves performance across
all �ve organizational test beds. The improvements are most
pronounced on the AOL and Bank of America phishing attack
time series, where RMSE is reduced by 5 to 50 percent. The
results on random forest might be explained by the inclusion
of an inherently ensemble-driven base predictor into another

ensemble, although further work is needed to examine the
underlying causes. Nevertheless, the results across all �ve
organizations and �ve out of six base predictors suggest that
the DGM framework concepts of ensemble-oriented usage of
generative models might have potential to boost time series
prediction in noisy, complex environments such as attack
prediction for CTI.

TABLE I: Impact of DGM aggregated to base predictors.

Without DGM With DGM

MAE RMSE MAE RMSE

ARIMA 61.8 92.5 53.4 82.9
Linear Regression 50.9 80.5 48.8 78.6
Ridge Regression 51.0 80.6 48.6 78.4
Random Forest 46.7 78.3 48.7 82.0
MLP 49.5 79.8 47.9 78.5
LSTM 65.8 95.2 48.3 80.5

TABLE II: Impact of DGM aggregated to organizations.

Without DGM With DGM

MAE RMSE MAE RMSE

AOL 77.0 95.9 73.3 91.5
BofA 36.0 37.8 18.3 20.9
eBay 120.5 236.1 119.8 235.7
Facebook 26.3 33.0 21.8 31.7
Wells Fargo 12.5 20.1 12.1 19.7

The results described in the prior paragraph used a �xed
prediction horizon. In order to examine the impact of predic-
tion horizon on effectiveness of predictors boosted by DGM
(relative to no use of DGM), we plotted MAE (y-axis) for
different horizon sizes in weeks (see Fig. 7) on the AOL, Bank
of America, and eBay data. As shown in the �gure, on all three
test beds depicted, DGM reduces forecasting error across an
array of prediction horizons. The results are most pronounced
when the horizons are shortest. That is, for 20-30 weeks or
less. However, this represents a very large prediction horizon
range. The results suggest that the DGM framework might be
of practical importance for near-term (e.g., 1-4 week) as well
as mid-term forecasting as far as a few months out, since it can
better anticipate time series structure than the base predictors.

B. Ablation Analysis

Ablation analysis was performed to shed light on the impact
of different components of the proposed DGM framework
on overall performance. In particular, three types of ablation
analyses were performed. In the �rst, we explored the impact
of using the TimeGAN and RVAE in conjunction with the
base predictors, as opposed to using different subset combina-
tions. In the second, we examined the effectiveness of fusing
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Fig. 7: Prediction horizon analysis, illustrating how performance of models on held-out test set changes with expanding
prediction horizon (in weeks) with and without deep generative models.

(a) Base Predictor (BP) (b) TimeGAN (c) RVAE (d) BP+TimeGAN+RVAE

Fig. 8: Actual held-out test data and predictions by multiple predictors and their ensemble when using MLP as a base predictor.

with LSS versus MergeNet. Lastly, we compared our DGM
framework with alternative data augmentation-based uses for
generative models that have been proposed in recent years.
Details are as follows.

1) Impact of TimeGAN, RVAE, and Base Combinations:
In the main results, our DGM approach ensembled the base
predictor trained on original time series with predictors trained
using TimeGAN-generated and RVAE-generated data. In order
to examine the impact of different combinations, we explored
all seven combinations (e.g., Base Predictor + TimeGAN, Base
Predictor + RVAE, Base Predictor + RVAE, all three, and each
predictor alone). Table III and Fig. 8 show the results. As
depicted in the table, for Facebook attack data, ensembling
the base predictor, TimeGAN, and RVAE together resulted
in the best performance for four of the six base predictors.
Fig. 8 illustrates how the base predictor was enhanced by the
RVAE and TimeGAN. This example illustrates the effect of
using a MLP base predictor on AOL and Facebook attack
data. As depicted in the �gure, the base predictors tended to
overreact to the most recent time series movements, resulting

in a relatively more turbulent set of forecasts. Conversely,
the TimeGAN produced a much smoother forecast and the
RVAE was also somewhat smoother than the base predictor.
Collectively, the ensemble with all three models fused together
offered the smoothest and most accurate forecasts. The results
lend credence to the design of the proposed DGM ensembling
framework.

TABLE III: Impact of different combinations of predictions,
based on MAE. Underline depicts better than Base Predictor.
Bold depicts best. BP, TG and RV denote Base Predictor,
TimeGAN and RVAE respectively.

BP TG RV TG,
RV

BP,
TG

BP,
RV

BP,
TG,
RV

ARIMA 29.1 36.3 26.3 28.2 24.8 30.7 23.6
Linear Regression 19.9 21.1 21.9 24.8 19.419.4 19.2
Ridge Regression 19.9 21.0 21.9 24.8 19.319.4 19.2
Random Forest 22.4 35.9 26.8 30.4 22.7 23.3 23.4
MLP 26.1 22.4 28.4 29.4 22.2 22.4 22.1
LSTM 40.4 39.8 40.6 25.9 23.0 22.9 23.0



(a) (b)

Fig. 9: Comparison of LSS and MergeNet for fusing ensemble
predictions on Facebook data using linear regression.

2) Impact of LSS Versus MergeNet on Performance:As
noted earlier, the analytical LSS approach and the iterative
MergeNet method (relying on a neural network) have varying
pros and cons when used for fusion. In order to explore these
trade-offs, we compared the results for our DGM framework
when using LSS versus MergeNet to fuse ensemble predictions
(Table IV). Interestingly, while LSS outperformed MergeNet
on the ARIMA and LSTM methods, MergeNet was slightly
better for the linear and ridge regressions and MLP. Fig.
9 depicts the RMSE results for LSS and MergeNet on the
Facebook data using linear regression as the base predictor.
The results include two intentional data manipulations (x-axes
on the two charts) applied to the training data: (i) the original
training data was scaled, and (ii) bias was introduced to the
original standardized training data. The purpose was to see
how the inclusion of scale distortion and bias in the training
data impacts performance as the training data further deviates
from test cases. As shown in the �gure, LSS outperforms
MergeNet when the training data distributions are relatively
unperturbed (i.e, the scale is around 1 and bias around 0),
while MergeNet is better when scale or bias are fairly high.
These results suggest that whereas LSS performs better on
the more stationary, less noisy time series, MergeNet has the
potential to offer robust learning in noisier environments.

TABLE IV: Impact of prediction aggregation methods, based
on MAE. Underline depicts better than base predictor, i.e.,
without prediction aggregation. Bold depicts best.

Base
Predictor

Simple
Average MergeNet LSS

ARIMA 29.0 30.4 26.3 23.6
Linear Regression 19.9 20.3 19.0 19.2
Ridge Regression 19.9 20.3 19.0 19.2
Random Forest 22.4 25.5 24.4 23.4
MLP 26.1 23.0 21.9 22.1
LSTM 40.4 40.3 23.0 23.0

3) Comparing DGM Versus Instance and Feature Data
Augmentation: DGM presents a slight departure from the
standard data augmentation use cases associated with many
generative models. Accordingly, we ran experiments to show
that using generative models in novel regularization con�g-

urations — such as ensembling in our DGM framework —
is more effective than routine instance/feature augmentation
that creates more rows or columns of data. The results appear
in Table V. The ensembling approach employed in DGM
improves results on all �ve organizational test beds — by
20 to 50 percent on four of the �ve data sets. These results
further underscore the ef�cacy of the DGM framework as a
viable alternative to traditional generative model-based data
augmentation techniques.

TABLE V: Impact of generated data utilization methods, based
on MAE. All approaches use GANs for data generation.
Underline depicts better than base predictor. Bold depicts best.

Base
Predictor

Instance
Augmentation

Feature
Augmentation

DGM
Ensembling

AOL 87.9 89.9 87.5 72.3
BofA 60.1 60.1 60.1 26.0
eBay 119.8 121.4 118.3 117.0
Facebook 40.4 40.3 40.4 23.0
Wells Fargo 12.9 15.6 16.1 12.5

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel deep generative model
(DGM) framework for enhanced time series forecasting in con-
texts involving noisy, complex data. We focused our analysis
on an important problem with potential for proactive CTI —
forecasting website phishing attack volume for organizations
in various industry sectors. Our results suggest that fusing
predictions based on original data and that generated by GANs
and RVAEs has the potential to boost forecasting power. Abla-
tion analysis revealed that the use of GANs and RVAEs offers
complementary bene�ts. Further, while LSS worked very well
on time series where the testing data patterns were closely
aligned with the training data, MergeNet provided bene�ts on
noisier time series data. Finally, we also show that DGM offers
more robust bene�ts than standard data augmentation-based
regularization approaches using generative models.

The results have important practical implications for CTI.
Forecasting of phishing attacks has received limited attention
in the literature. As shown earlier in Fig. 7, DGM enables
better predictive power over longer prediction horizons — as
far out as four to six months. By allowing identi�cation of
emerging threat levels at varying time intervals, cybersecu-
rity managers can anticipate threat levels/volumes and plan
accordingly at the operational, tactical, and strategic levels.
Collectively, the results suggest that extensible frameworks
such as DGM are well-suited to adapting to the distinct
aforementioned characteristics of noisy time series (non-
stationarity, lack of cyclicality, sparesness, incompleteness,
and so on). By boosting many different base predictors on time
series data from �ve different organizations' phishing attacks,
with two complementary ensemble fusion options, the DGM
framework affords exciting future possibilities. For instance,
ensembling could be replaced with an end-to-end learning
mechanism involving more advanced fusion approaches and



cross-pollination between the different ensemble members.
While VAE-GANs did not work well here, such architectures
may provide the building blocks and intuitions for more
powerful hybridization strategies. Generative models clearly
have exciting potential for time series forecasting. We believe
this study constitutes an important step that other work can
build upon.
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