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Abstract—A major concern when incorporating large sets of diverse n-gram features for sentiment classification is the presence of

noisy, irrelevant, and redundant attributes. These concerns can often make it difficult to harness the augmented discriminatory

potential of extended feature sets. We propose a rule-based multivariate text feature selection method called Feature Relation Network

(FRN) that considers semantic information and also leverages the syntactic relationships between n-gram features. FRN is intended to

efficiently enable the inclusion of extended sets of heterogeneous n-gram features for enhanced sentiment classification. Experiments

were conducted on three online review testbeds in comparison with methods used in prior sentiment classification research. FRN

outperformed the comparison univariate, multivariate, and hybrid feature selection methods; it was able to select attributes resulting in

significantly better classification accuracy irrespective of the feature subset sizes. Furthermore, by incorporating syntactic information

about n-gram relations, FRN is able to select features in a more computationally efficient manner than many multivariate and hybrid

techniques.

Index Terms—Natural language processing, machine learning, text mining, subspace selection, affective computing.
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1 INTRODUCTION

THE Internet is rich in directional text (i.e., text contain-
ing opinions and emotions). The web provides

volumes of text-based data about consumer preferences,
stored in online review websites, web forums, blogs, etc.
Sentiment analysis has emerged as a method for mining
opinions from such text archives. It uses machine learning
methods combined with linguistic attributes/features in
order to identify among other things the sentiment
polarity (e.g., positive, negative, and neutral) and intensity
(e.g., low, medium, and high) for a particular text.
Important applications of text sentiment analysis include
evaluating consumer perceptions [25], [26], [36], shedding
light on investor opinions [8], and assessing the quality of
online reviews [42].

Although it serves numerous functions, text sentiment
analysis remains a challenging problem. It requires the use of
large quantities of linguistic features [2], [4]. Various types of
n-gram features have emerged for capturing sentiment cues
in text. However, few studies have attempted to integrate
these heterogeneous n-gram categories into a single feature

set due to the inherent challenges. Noise and redundancy in

the feature space increase the likelihood of overfitting. They

also prevent many quality features from being incorporated

due to computational limitations, resulting in diminished

accuracy [17]. Further, large text feature spaces span

hundreds of thousands of features, making many powerful

feature selection methods infeasible. Consequently existing

feature selection methods do not adequately address

attribute relevance and redundancy issues, which are critical

for text sentiment analysis [40].
In this study, we propose the use of a rich set of n-gram

features spanning many fixed and variable n-gram cate-

gories. We couple the extended feature set with a feature

selection method capable of efficiently identifying an

enhanced subset of n-grams for opinion classification. The

proposed Feature Relation Network is a rule-based multi-

variate n-gram feature selection technique that efficiently

removes redundant or less useful n-grams, allowing for

more effective n-gram feature sets. FRN also incorporates

semantic information derived from existing lexical re-

sources, enabling augmented weighting/ranking of n-gram

features. Experimental results reveal that the extended

feature set and proposed feature selection method can

improve opinion classification performance over existing

selection methods.
The remainder of the paper is organized as follows:

Section 2 provides a review of related work on features and

feature selection methods for sentiment analysis. It also

identifies research gaps. Section 3 provides our research

design. Section 4 includes an experimental evaluation of the

proposed features and selection method in comparison with

existing feature sets and feature selection techniques.

Finally, Section 5 outlines conclusions and future directions.
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2 RELATED WORK

Opinion mining involves several important tasks, including
sentiment polarity and intensity assignment [18], [31].
Polarity assignment is concerned with determining whether
a text has a positive, negative, or neutral semantic orienta-
tion. Sentiment intensity assignment looks at whether the
positive/negative sentiments are mild or strong. Given the
two phrases “I don’t like you” and “I hate you,” both would
be assigned a negative semantic orientation but the latter
would be considered more intense.

Effectively classifying sentiment polarities and intensi-
ties entails the use of classification methods applied to
linguistic features. While several classification methods
have been employed for opinion mining, Support Vector
Machine (SVM) has outperformed various techniques
including Naı̈ve Bayes, Decision Trees, Winnow, etc. [1],
[2], [7], [29]. The most popular class of features used for
opinion mining is n-grams [28], [38]. Various n-gram
categories have attained state-of-the-art results [3], [27].
Larger n-gram feature sets require the use of feature
selection methods to extract appropriate attribute subsets.
Next, we discuss these two areas: n-gram features and
feature selection techniques used for sentiment analysis.

2.1 N-Gram Features for Sentiment Analysis

N-gram features can be classified into two categories: fixed
and variable. Fixed n-grams are exact sequences occurring
at either the character or token level. Variable n-grams are
extraction patterns capable of representing more sophisti-
cated linguistic phenomena. A plethora of fixed and
variable n-grams have been used for opinion mining,
including word, part-of-speech (POS), character, legomena,
syntactic, and semantic n-grams.

Word n-grams include bag-of-words (BOWs) and higher
order word n-grams (e.g., bigrams, trigrams). Word n-
grams have been used effectively in several studies [28].
Typically, unigrams to trigrams are used [3], [27], though 4-
grams have also been employed [34]. Word n-grams often
provide a feature set foundation, with additional feature
categories added to them [4], [27], [34], [38].

Given the pervasiveness of adjectives and adverbs in
opinion-rich text, POS tag, n-grams are very useful for
sentiment classification [10], [12]. Additionally, some studies
have employed word plus part-of-speech (POSWord) n-
grams. These n-grams consider a word along with its POS
tag in order to overcome word-sense disambiguation in
situations where a word may otherwise have several senses
[38]. For example, the phrase “quality of the” can be
represented with the POSWord trigram “quality-noun of-
prep the-det.”

Character n-grams are letter sequences. For example, the
word “like” can be represented with the following two and
three letter sequences “li, ik, ke, lik, ike.” While character n-
grams were previously used mostly for style classification,
they have recently been shown to be useful in related affect
classification research attempting to identify emotions in
text [2].

Legomena n-grams are collocations that replace once
(hapax legomena) and twice occurring words (dis legome-
na) with “HAPAX” and “DIS” tags [2], [38]. Hence, the

trigram “I hate Jim” would be replaced with “I hate
HAPAX” provided “Jim” only occurs once in the corpus.
The intuition behind such collocations is to remove sparsely
occurring words with tags that will allow the extracted n-
grams to be more generalizable [37], [38].

Syntactic phrase patterns are learned variable n-grams
[34]. Riloff et al. [33] developed a set of syntactic templates
and information extraction patterns (i.e., instantiations of
those templates) reflective of subjective content. Given a set
of predefined templates, patterns with the greatest occur-
rence difference across sentiment classes are extracted. For
example, the template “<subj> passive-verb” may produce
the pattern “<subj> was satisfied.” Such phrase patterns can
represent syntactic phenomena difficult to capture using
fixed-word n-grams [12], [38].

Semantic phrase patterns typically use an initial set of
terms or phrases, which are manually or automatically
filtered and coded sentiment polarity/intensity informa-
tion. Many studies have used WordNet to automatically
generate semantic lexicons [19], [23] or semantic word
classes [6]. Riloff et al. [33] used a semiautomated approach
to construct sets of strong/weak subjectivity and objective
nouns. Others have manually annotated or derived seman-
tic phrases [4], [10].

Table 1 provides a summary of n-gram features used for
opinion classification. Based on the table, we can see that
many n-gram categories have been used in prior opinion
mining research. However, few studies have employed
large sets of heterogeneous n-grams. As stated before, most
studies utilized word n-grams in combination with one
other category, such as POS tag, legomena, semantic, or
syntactic n-grams, e.g., [1], [4], [27], [34], [38].

2.2 Feature Selection for Sentiment Analysis

Prior sentiment classification studies have placed limited
emphasis on feature selection techniques, despite their
benefits [20]. Feature selection can potentially improve
classification accuracy [17], narrow in on a key feature
subset of sentiment discriminators, and provide greater
insight into important class attributes. There are two
categories of feature selection methods [15], [16], both of
which have been used in prior sentiment analysis work:
univariate and multivariate.
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Univariate methods consider attributes individually.
Examples include information gain, chi-squared, log like-
lihood, and occurrence frequency [11]. Although univariate
methods are computationally efficient, evaluating indivi-
dual attributes can also be disadvantageous since important
attribute interactions are not considered. It is also easier to
interpret the contribution of individual attributes using
univariate methods. Most opinion mining studies have
used univariate feature selection methods such as minimum
frequency thresholds and the log-likelihood ratio [12], [27],
[39]. Information gain (IG) [44], [45] has also been shown to
work well for various text categorization tasks, including
sentiment analysis [3]. Tsutsumi et al. [35] used the Chi-
Squared test to select features for text sentiment classifica-
tion. Table 2 shows select univariate feature selection
methods used in sentiment classification studies.

Multivariate methods consider attribute groups or sub-
sets. These techniques sometimes use a wrapper model for
attribute selection, where the accuracy of a target classifier is
used as an evaluation metric for the predictive power of a
particular feature subset [16]. Examples include decision tree
models, recursive feature elimination, and genetic algo-
rithms. By performing group-level evaluation, multivariate
methods consider attribute interactions. Consequently, these
techniques are also computationally expensive in relation to
univariate methods. Decision tree models (DTMs) use a
wrapper, where a DTM is built on the training data and
features incorporated by the tree are included in the feature
set [1], [21]. Recursive feature elimination uses a wrapper
model based on an SVM classifier [15]. During each iteration,
the remaining features are ranked based on the absolute
values of their SVM weights, and a certain number/
percentage of these are retained [2], [3], [24]. Genetic
algorithms (GAs) have been used to search for ideal subsets

across the feature subspace in text classification problems

such as style [20] and sentiment analysis [3]. A major pitfall

associated with GA is that they can be computationally very

expensive, since hundreds/thousands of solutions have to

be evaluated using a classifier [3]. Feature subsumption

hierarchies (FSHs) use the idea of performance-based

feature subsumption to remove redundant or irrelevant

higher order n-grams [34]. Only those word bigrams and

trigrams are retained, which provide additional information

over the unigrams they encompass. Table 3 shows multi-

variate methods used for sentiment classification.

2.2.1 Other Feature Selection Methods

In addition to prior sentiment feature selection methods, it is

important to briefly discuss multivariate and hybrid meth-

ods used in related tasks. Principal component analysis

(PCA) has been used considerably for dimensionality
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reduction in text style classification problems [46]. Recently,

many powerful dimensionality reduction techniques have

also been applied to nontext feature selection problems.

These include conditional mutual information (CMIM),

harmonic mean, geometric mean, general averaged diver-

gence analysis, and discriminative locality alignment (DLA)

[14], [47], [48], [49], [50]. CMIM outperformed comparison

techniques (including DTM) on image classification and

biomedical prediction tasks [14]. DLA outperformed meth-

ods such as PCA and linear discriminant analysis on image

classification tasks [50].
Hybrid methods that combine univariate measures with

multivariate selection strategies can potentially improve the

accuracy and convergence efficiency of otherwise slower

multivariate methods [5], [22]. For instance, a hybrid GA

utilizing the IG measure has been shown to converge faster

than regular GA, when applied to feature sets spanning up

to 26,000 features [3].

2.3 Research Gaps

Based on our review, we have identified appropriate gaps.

Most studies have used limited sets of n-gram features,

typically employing one or two categories [27], [28]. Larger

n-gram feature sets introduce computational difficulties

and potential performance degradation stemming from

noisy feature sets. For instance, the popular 2,000 movie

review testbed developed by Pang et al. [28] has over

49,000 bag-of-words [4]. Higher order n-gram feature

spaces can be even larger, with hundreds of thousands of

potential attributes. Feature selection methods are needed

to help manage the large feature spaces created from the

use of heterogeneous n-grams. As Riloff et al. [34] noted,

using additional text features without appropriate selection

mechanisms is analogous to “throwing the kitchen sink.”

However, large-scale feature selection requires addressing

relevance and redundancy, something many existing

methods fail to do [40].
Redundancy is a big problem since there are a finite

number of attributes that can be incorporated and n-grams

tend to be highly redundant by nature. In the case of

univariate methods, redundant features occupy valuable

spots that may otherwise be utilized by attributes providing

additional information and discriminatory potential.

Powerful multivariate methods are capable of alleviating

redundancy; however, they are often unsuitable for

computational reasons. These methods have typically been

applied to smaller feature sets, e.g., [15], [20]. It is unclear

whether hybrid feature selection methods have the poten-

tial to overcome issues stemming from redundancy. More-

over, most of the feature selection methods described are

generic techniques that have been applied to a plethora of

problems, since they assess attribute relevance solely based

on the training data. Whenever possible, domain knowl-

edge should be incorporated into the feature selection

process [16]. Existing lexicons and knowledge bases

pertaining to the semantic and syntactic properties of n-

grams could be exploited for enhanced assessment of

relevance and redundancy associated with text attributes.

3 RESEARCH DESIGN

We propose the use of a rich set of n-gram features, coupled
with the Feature Relation Network (FRN) for enhanced
sentiment intensity and polarity classification performance.
The proposed FRN feature selection method will be
compared against various univariate, multivariate, and
hybrid selection techniques used in prior research, includ-
ing log-likelihood ratio, information gain, chi-squared,
recursive feature elimination, decision tree models, and
genetic algorithms. The extended feature set and FRN
method are discussed in the remainder of this section.

3.1 Extended N-Gram Feature Set

We incorporate a rich set of n-gram features, consisted of all
the categories discussed in the literature review. The feature
set is shown in Table 4. The syntactic n-grams were derived
using the Sundance package [33], [34]. This tool extracts n-
gram instantiations of predefined pattern templates. Sun-
dance learns n-grams that have the greatest occurrence
difference across user-defined classes. For instance, the n-
gram “endorsed <dobj>” is generated from the pattern
template “ActVP <dobj>.” The semantic n-grams were
derived using WordNet, following an approach similar to
that used by Kim and Hovy [19] and Mishne [23]. Words
are clustered into semantic categories based on the number
of common items in their synsets. New words are added to
the cluster with the highest percentage of synonyms in
common provided the percentage is above a certain
threshold. Otherwise, the word is added to a new cluster.

3.2 Feature Relation Network

For text n-grams, the relationship between n-gram categories
can facilitate enhanced feature selection by considering
relevance and redundancy, two factors critical to large-scale
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feature selection [41]. We propose a rule-based multivariate
text feature selection method that considers semantic

information and also leverages the syntactic relationships
between n-gram features in order to efficiently remove

redundant and irrelevant ones. Comparing all features
within a feature set directly with one another can be an

arduous endeavor. However, if the relationship between
features can be utilized, thereby comparing only some logical

subset of attributes, then the feature selection process can be
made more efficient. Given large quantities of heterogeneous

n-gram features, the FRN utilizes two important n-gram
relations: subsumption and parallel relations. These two

relations enable intelligent comparison between features in a
manner that facilitates enhanced removal of redundant and/

or irrelevant n-grams.

3.2.1 Subsumption Relations

In addition to prior sentiment feature selection methods, it is

important to briefly discuss multivariate. The notion of
subsumption was originally proposed by Riloff et al. [34]. A

subsumption relation occurs between two n-gram feature
categories, where one category is a more general, lower order

form of the other [34]. A subsumes BðA! BÞ if B is a higher
order n-gram category whose n-grams contain the lower

order n-grams found in A. For example, word unigrams
subsume word bigrams and trigrams, while word bigrams

subsume word trigrams (as shown on the left side of Fig. 1).
Given the sentence “I love chocolate,” there are six word n-

grams: I, LOVE, CHOCOLATE, I LOVE, LOVE CHOCO-
LATE, and I LOVE CHOCOLATE. The unigram LOVE is

obviously important, generally conveying positive senti-
ment. However, what about the bigrams and trigrams? It

depends on their weight, as defined by some heuristic (e.g.,
log likelihood or information gain). We only wish to keep

higher order n-grams if they are adding additional informa-
tion greater than that conveyed by the unigram LOVE. Hence,

given A! B, we keep features from category B if their weight
exceeds that of their general lower order counterparts found

in A by some threshold t [34]. For instance, the bigrams I
LOVE and LOVE CHOCOLATE would only be retained if

their weight exceeded that of the unigram LOVE by t (i.e., if
they provided additional information over the more general

unigram). Similarly, the trigram I LOVE CHOCOLATE
would only be retained if its weight exceeded that of the

unigram LOVE and any remaining bigrams (e.g., I LOVE and
LOVE CHOCOLATE) by t.

3.2.2 Parallel Relations

A parallel relation occurs where two heterogeneous same

order n-gram feature groups may have some features with

similar occurrences. For example, word unigrams (1-Word)

can be associated with many POS tags (1-POS), and vice

versa. However, certain word and POS tags’ occurrences

may be highly correlated. Similarly, some POS tags and

semantic class unigrams may be correlated if they are used

to represent the same words. For example, the POS tag

ADMIRE_VP and the semantic class SYN-Affection both

represent words such as “like” and “love.” Given two n-

gram feature groups with potentially correlated attributes,

A is considered to be parallel to B (A—B). If two features

from these categories A and B, respectively, have a

correlation coefficient greater than some threshold p, one

of the attributes is removed to avoid redundancy. The right

side of Fig. 1 shows some examples of bigram categories

with parallel relations.
Correlation is a commonly used method for feature

selection [11], [17]. However, correlation is generally used

as a univariate method by comparing the occurrences of an

attribute with the class labels, across instances [11].

Comparing attribute intercorrelation could remove redun-

dancy, yet is computationally infeasible, often necessitating

the use of search heuristics [17], [40]. FRN allows the

incorporation of correlation information by only comparing

select n-grams (ones from parallel relation categories within

the FRN).

3.2.3 The Complete Network

Fig. 2 shows the entire FRN, consisted of the nodes

previously described in Table 3. The network encompasses

22 n-gram feature category nodes and numerous subsump-

tion and parallel relations between these nodes. The

detailed list of relations is presented in Table 5. The order

in which the relations are applied is important to ensure

that redundant and irrelevant attributes are removed

correctly. Subsumption relations are applied prior to

parallel relations. Furthermore, subsumption relations

between n-gram groups within a feature category are

applied prior to across category relations (i.e., 1-Word! 2-

Word is applied prior to 1-Word! 1-POSWord).
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Fig. 1. (left) Subsumption relations between word n-grams and (right)
parallel relations between various bigrams.

Fig. 2. The feature relation network.



3.2.4 Feature Weights: Incorporating Semantic

Information

Features weights wðaxÞ are computed by considering their

occurrence distribution across classes in the training data
wtðaxÞ, as well as their semantic weightwsðaxÞ, which is based
on the degree of subjectivity associated with the n-gram.

Utilizing the semantic weight in addition to the training
weight is intended to enhance relevance measurement and
alleviate overfitting attributable to solely relying on training

data for the calculation of feature weights.
An n-gram’s potential level of subjectivity is derived from

SentiWordNet, a lexical resource that contains three senti-
ment polarity scores (i.e., positivity, negativity, and objec-

tivity) for synsets consisted of word-sense pairs [9].
SentiWordNet contains scores for over 150,000 words, with
scores being on a 0-1 scale. For instance, the synset consisting

of the verb form of the word “short” and the word “short-
change” has a positive score of 0 and a negative score of 0.75.
The semantic weight wsðaxÞ for an n-gram is computed by

determining the average polarity value across the individual
tokens encompassed within the n-gram. For each token axi,
the polarity value is the average of the sum of its positive and
negative scores for each word-sense pair sðaxi; jÞ in
SentiWordNet, where j is one of the k senses of axi.

Fig. 3 shows the weighting formulation for word n-grams.
Other n-gram feature categories use a similar formulation,
with minor differences in the computation of wsðaxÞ. In the
case of legomena n-grams, the polarity values are only
averaged across words that are not hapax legomena or dis
legomena. For POSWord n-grams, the word polarity values
are only computed for word-sense pairs, where the sense has
the same POS as that of the tag associated with the word. POS
tag n-gram’s semantic weights are the average of their
individual tag’s polarity values. A tag’s value is computed by
first identifying the set of words within the training data that
have the tag’s POS. Next, the average score across these
words is calculated from SentiWordNet for word-sense
pairs, where the sense has the same POS as the tag. In the case
of semantic class n-grams, the polarity value for a particular
token is the average of s(axi, j) scores for all words associated
with the token’s semantic class. Character n-grams do not
receive a semantic weight (i.e., wsðaxÞ ¼ 0).

Fig. 4 describes the FRN algorithm details. Given feature
a from category A, we first find the feature categories that
are subsumed by A (based on the precedence defined in
Table 5). Then, all features from these categories containing
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List of Relations between N-Gram Feature Groups

Fig. 3. Weighting mechanism for n-grams.

Fig. 4. The FRN algorithm.



the substring a and having the same semantic orientation

are retrieved. The semantic orientation of a feature is

defined as the class for which the attribute has the highest

probability of occurring. The semantic orientation of

features is compared to avoid having features such as

DON’T LIKE get subsumed by the unigram LIKE (since the

two features have opposing semantic orientations). Feature

weights are computed using the procedure described in the

prior section and Fig. 3. The weights for the retrieved

features are compared against that of a, and only those

features are retained with a weight greater than a by some

threshold t.
The parallel relations are enforced as follows: Given

feature a from category A, we find the feature categories that

are parallel to A. Features from these categories with

potential co-occurrence with a are retrieved. The correlation

coefficient for these features is computed in comparison with

a. If the coefficient is greater than or equal to some threshold

p, one of the features is removed. We remove the feature with

the lower weight (ties are broken arbitrarily). It is important

to note that for subsumption and parallel relations, only

features still remaining in the feature set are analyzed and/
or retrieved (i.e., ones with a weight greater than 0).

Although FRN utilizes subsumption relations as does
FSH, it differs from FSH [34] in many ways. First, FRN
incorporates seven n-gram feature categories whereas FSH
only employs word n-grams and information extraction
patterns. Second, FSH utilizes a weighting function that
incorporates a unique training data-based weighting heur-
istic wtðaxÞ and a semantic weighting heuristic based on an
independent lexicon wsðaxÞ, while FSH utilizes the feature’s
IG score. Third, FRN incorporates subsumption and parallel
relations, while FSH only uses subsumption. Fourth, FRN
represents relations in a network, where features from any
category can potentially be removed. In contrast, FSH uses a
tree representation, where all features from the highest level
node (i.e., word unigrams) are always retained.

Fig. 5 shows an illustration of the FRN applied to a six-
sentence testbed (three positive and three negatively
oriented sentences). The table in the bottom left corner
shows the feature weights for many key categories (e.g.,
word, POS, and semantic n-grams). The weights depicted
include the initial wðaxÞ, the wtðaxÞ based on the six-
sentence testbed, wsðaxÞ, and the adjusted wðaxÞ after the
FRN has accounted for redundancy. The FRN is able to
remove redundant or less useful n-grams, keeping only 6 of
the 16 features shown. For example, the bigram I LOVE gets
subsumed by the unigram LOVE. Similarly, the semantic
class unigram SYN-Affection is parallel to the POS tag
ADMIRE_VBP, and therefore, removed. Details for each
removed n-gram are provided in the FRN on the right-hand
side of the diagram. It is important to note that only the
portion of the FRN, which is relevant to these features, is
shown. The removed n-grams are placed next to the
subsumption or parallel relation responsible for their
removal. These features correspond to the features with
an adjusted wðaxÞ of 0.

4 EXPERIMENTS

We conducted opinion classification experiments on three
review testbeds, shown in Table 6. The first contained digital
camera reviews collected from Epinions. This testbed
featured 1-5 star reviews. We only used whole star reviews
(i.e., no half star reviews were included). The second testbed
encompassed automobile reviews taken from Edmunds.
These reviews were on a continuous 10-point scale. We
discretized them into five classes by taking all odd integer
reviews. For example, all reviews between 1.0 and 1.99 were
assigned 1 star while reviews between 3.0 and 3.99 were
considered 2-star reviews. The third testbed was a bench-
mark movie review data set developed by Pang et al. [28].
This data set contains reviews taken from Rotten Tomatoes
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Fig. 5. Example application of FRN to a six-sentence testbed.
(a) Example sentences. (b) Feature weights. (c) Feature relation network.

TABLE 6
Description of Online Review Testbeds



that are either positive or negative. For each testbed, we
used a total of 2,000 reviews.

For each testbed, we performed fivefold cross validation
on the 2,000 reviews. These reviews were balanced across
classes. Hence, there were 400 reviews per class for the
digital camera and automobile testbeds and 1,000 reviews
per class for the movie review testbed. All experiments
were run using WEKA’s linear kernel SVM classifier [43].
Feature presence was used as opposed to frequency since it
has wielded better results in past research using n-grams
for opinion classification [27], [28]. Hence, we used binary
feature vectors (1 if the n-gram is present in the document, 0
if it is not present).

The following two metrics were used. The percentage
within-one accuracy was incorporated since multiclass
opinion classification, involving three or more classes, can
be challenging given the relationship and subtle differences
between semantically adjacent classes. It is often difficult
even for humans to accurately differentiate between, for
instance, one- and two-star reviews [8].

% Accuracy ¼ # correctly assigned

# total reviews
;

% WithinOne ¼ # assigned within one class of correct

# total reviews
:

Based on our research design, four different experiments
were conducted. In Experiment 1, we compared the
proposed FRN against various univariate feature selection
methods using the extended n-gram feature set as well as
word n-grams and a bag-of-words baseline. Experiment 2
compared the FRN method against previously used multi-
variate feature selection methods. In Experiment 3, FRN
was evaluated against various hybrid feature selection
methods. Experiment 4 presents ablation and parameter
testing results for FRN. In all experiments, FRN was run
using t ¼ 0:05 and p ¼ 0:90.

4.1 Experiment 1: Comparison of FRN against
Univariate Feature Selection Methods

We ran the FRN in comparison with LL, IG, and CHI. All
four of these feature selection methods were run on the
extended feature set described in Section 3.1, which
encompassed the word, POS, POSWord, character, legome-
na, syntactic, and semantic n-grams. In order to assess the
impact of using the extended feature set, we also compared
two additional feature sets: bag-of-words and word n-
grams. These feature sets were only run in conjunction with
LL, resulting in two additional feature/feature selection
combinations, BOW/LL and WNG/LL. BOW/LL consti-
tuted a baseline while WNG/LL was employed since it had
performed well in prior opinion classification studies [27].
For the three feature sets (i.e., all n-grams, WNG, and BOW),
we extracted all feature occurring at least three times [2],
[28]. The extracted features were ranked using the afore-
mentioned four feature selection methods on the training
data for each of the five cross-validation folds. Hence, for
each fold, the weights for all features occurring three times
or more in the 1,600 training reviews were computed.

When comparing feature sets and selection methods, it is
difficult to decide upon the number of features that should

be included. Different feature set sizes can wield varying
performance depending on the nature of the features and
selection methods employed. In order to allow a fair
comparison between feature selection methods, we evalu-
ated the top 10,000 to 100,000 features (i.e., the highest
weighted/ranked attributes), in 2,500 feature increments.
Hence, 37 feature quantities were used for all three feature
sets. The total number of BOW typically did not exceed
20,000, so only that many were evaluated. Such a setup is
consistent with experimental designs used in prior research,
e.g., [15], [34].

Fig. 6 shows the results for all six methods across the
three testbeds. The table on the left of the figure shows the
best percentage accuracy, the number of features used to
attain these best results, pairwise t-test results using this
number of features on random 90-10 training-testing splits
(n ¼ 30), the area under the curve (AUC), and p-values for
pairwise t-tests across the different feature subset sizes
(n ¼ 37). The first t-test was intended to measure the
significance of the best results, while the second measured
the overall effectiveness across feature subset sizes. BOW/
LL was not compared on the second t-test, since it did not
have enough features to generate a sufficient number of
feature subsets. The charts on the right show the results for
all 37 feature subsets (using the top 10,000 to 100,000 fea-
tures). Looking at the left side of Fig. 6, FRN outperformed
LL, IG, CHI, WNG/LL, and BOW/LL on all three testbeds
in terms of best accuracy and AUC. FRN’s best accuracy
values were 3-4 percent better than any of the comparison
techniques across all three testbeds. Based on the pairwise
t-test results, FRN significantly outperformed the compar-
ison methods, with all p-values significant at alpha ¼ 0:05.

The charts on the right side of Fig. 6 show the accuracies
for the feature selection methods, using between 10,000 and
100,000 features. FRN outperformed LL, CHI, WNG/LL,
and BOW/LL on all three testbeds by a wide margin, with
considerably better accuracy on virtually all feature subset
sizes. It also outperformed IG on all but one feature subset
size on the movie and automobile review data sets.
However, IG had slightly better accuracy on a few of the
37 feature subset sizes on the digital camera testbed.
Nevertheless, FRN had a higher AUC and its best accuracy
was 2 percent greater than that of IG.

Looking at the results by feature set, techniques that
utilized the extended feature set (i.e., LL, IG, and CHI)
outperformed WNG/LL and the BOW/LL baseline on the
digital camera data sets. They also had slightly better
performance on the automobile data set. However, WNG/
LL had better performance on the movie testbed. Overall,
the extended feature set did not provide a significant
performance increase over word n-grams when using
univariate feature selection methods. This is not surprising
since the extended feature set includes many redundant
attributes across the various categories, which univariate
feature selection methods are unable to remove. Conse-
quently, the univariate methods require more attributes
from the extended feature set to get the necessary depth
required for enhanced opinion classification accuracy; only
a subset of the highest weighted features is truly providing
additional discriminatory potential. This is evidenced by

454 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 3, MARCH 2011



the general upward slope of LL, CHI, and IG as the feature

subset sizes increase.
The results emphasize the need to combine rich, extended

feature sets with more powerful feature selection techniques

capable of exploiting the additional information these
feature sets can provide while overcoming the increased
noise and redundancy levels that are inevitable. The
experiments demonstrate FRN’s ability to garner enhanced
performance when using the extended feature set (as
compared to existing univariate feature selection methods).

Fig. 7 shows the percentage within-one results on the
digital camera and automobile testbeds (the movie review
data set only had two classes). The within-one accuracies
tended to fall in the 86-90 percent range for FRN, LL, IG,
and CHI; suggesting that the majority of errors do indeed
fall within one class (e.g., a 1-star review getting mis-
classified as a 2-star, or vice versa). FRN outperformed all
comparison methods on both testbeds in terms of best
within-one accuracy and AUC. FRN’s best within-one
accuracy values were at least 2-3 percent better than the
comparison techniques, with all pairwise t-test p-values
significant at alpha ¼ 0:05. Based on the charts on the right
side of Fig. 7, FRN outperformed LL, CHI, IG, WNG/LL,
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and BOW/LL on virtually all feature subset sizes on the
automobile testbed and for all feature subset sizes larger
than 45,000 on the digital camera data set.

4.2 Experiment 2: Comparison of FRN against
Multivariate Feature Selection Methods

We compared the FRN against multivariate feature selection
methods. The comparison methods incorporated were RFE,
FSH, DLA, CMIM, DTM, GA, and PCA. For RFE and DTM,
we began with the 200,000 most frequently occurring
features in the training data (for that particular fold). Since
these multivariate methods’ underlying classification mod-
els analyze the entire feature set in unison, additional
features could not be included for computational reasons.
RFE was run using a linear kernel SVM classifier. Each
iteration, the 2,500 features with the lowest SVM weights
were eliminated (as described in Section 2.3) until only
10,000 features remained. FSH was run using a subsumption
threshold of 0.05, since this yielded the best results on the
testing data. PCA was run using a sparse implementation
designed to reduce computational times and virtual memory
constraints. The PCA output was used as input for DLA [50],
which was run using a weight of 1, and with 10-20 nearest
neighbors (10 on automobiles, 20 on digital cameras and
movie reviews), as these settings attained the best results on
the testing data. Since CMIM is a binary technique [14], its
feature rankings on the multiclass data sets were the average
of all binary class comparisons’ feature scores (i.e., the
average of the 10 comparisons’ scores per feature on the
automobile and digital camera testbeds). DTM was run
iteratively, where for each iteration, all features selected by
DTM were added to the feature set with a rank lower than
the features added in the previous iteration. The GA was run
for 100 generations with a population size of 30, a crossover
rate of 0.60, and mutation probability of 0.001 [3]. It used
twofold cross validation on the training data for each fold
(run using an SVM classifier) to assess the fitness of a
particular solution. Since GA, DLA, and PCA do not rank the
feature space (instead performing subset selection or
transformation-based reduction), the number of features
listed is the amount upon which these methods were
applied, not the amount actually selected. For example, the
GA value for 20,000 features indicates the results attained by
the GA when selecting a subset of the 20,000 most frequently
occurring features. For the seven comparison methods (as
with FRN), we again evaluated all 37 feature subsets ranging
from the top 10,000 to 100,000 features (in 2,500 feature
increments).

Fig. 8 show the accuracies for FRN in comparison with
the multivariate feature selection methods. FRN had the
highest best accuracy value and the greatest AUC on all
three testbeds. It significantly outperformed all comparison
methods in terms of best accuracy and AUC (all p-values
less than 0.05) on the automobile and movie review
testbeds. Looking at the charts on the right side of Fig. 8,
FRN’s performance was far better on those two testbeds,
with accuracy values generally 3-6 percent higher than the
nearest comparison technique. On the digital camera data
set, FRN significantly outperformed all comparison meth-
ods in terms of best overall accuracy. For the t-tests across
feature set sizes, it significantly outperformed DLA, CMIM,
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GA, and PCA. But the performance gain over RFE, DTM,
and FSH was not significant (p-values of 0.372 0.344, and
0.281, respectively): these methods had better performance
for feature subset sizes less than 50,000-60,000 features
while FRN outperformed them on the larger subset sizes.

With respect to the comparison methods, RFE, DLA, and
FSH had the best performance. For RFE and FSH, these
results are consistent with prior feature selection studies,
where these methods also performed well [3], [15], [34].
Although DLA has not previously been applied to text
feature selection problems [50], it attained some of the
highest best accuracy values (after FRN), suggesting that
the method could be highly useful in future sentiment
analysis work. The GA had difficulty converging due to the
large, noisy input feature spaces. This caused it to perform
poorly as compared to prior research where it fared well on
feature set sizes under 30,000 features [3].

Fig. 9 shows the percentage within-one results. FRN
outperformed all comparison multivariate methods on both

testbeds in terms of best within-one accuracy. FRN’s best
within-one accuracy values were generally 1.5 to 3 percent
better than the best comparison techniques. It also out-
performed FSH, DLA, CMIM, DTM, GA, and PCA in terms
of AUC on both testbeds, and RFE on the automobile
testbed. However, its AUC was not significantly better than
RFE, FSH, or DTM on the digital camera data set, with RFE
attaining a marginally higher AUC value. Once again, this
was attributable to FRN being outperformed by these
methods for select feature subset sizes below 50,000.

4.3 Experiment 3: Comparison of FRN against
Hybrid Feature Selection Methods

Various hybrid feature selection techniques, which com-
bined univariate and multivariate methods, were compared
against FRN. The hybrid methods used the univariate
techniques to rank attributes in the feature space. A subset
of these ranked attributes (the top 150,000) was then input
into the multivariate methods. The initial number of ranked
features incorporated into the multivariate component of
the hybrid techniques was determined by trial-and-error,
utilizing larger quantities (e.g., 200,000 features) resulted in
diminished classification performance and increased run-
times. Three different univariate (IG, CHI, and LL) and
multivariate methods (RFE, DTM, and GA) were used,
resulting in nine possible hybrid combinations. For in-
stance, the IG/RFE involved running the RFE algorithm on
the 150,000 features with the highest IG weights, and
recursively eliminating 2,500 features per iteration until
only 10,000 remained. As with the previous experiments,
each hybrid method was evaluated in terms of its
effectiveness on subsets of 10,000 to 100,000 features, in
2,500 feature increments. Multivariate methods such as
CMIM and FSH were not considered since they already
utilize the entire feature space in a computationally efficient
manner. Combining these techniques with univariate
methods did not yield any significant advantage in terms
of accuracy or computation times.

Fig. 10 shows the accuracies for FRN in comparison
with the hybrid feature selection methods. FRN had the
highest best accuracy value, the greatest AUC, and
significantly outperformed all nine comparison methods
(all p-values less than 0.05) in terms of best accuracy and
best within-one, as well as for the AUC values across the
37 feature subset sizes, for all three testbeds. With respect
to the comparison hybrid methods, LL/RFE had the best
overall performance.

In general, the choice of multivariate method seemed to
have a greater impact on performance than the associated
univariate method. Hybridizations involving RFE outper-
formed those containing GA or DTM in terms of their AUC
values, while GA outperformed DTM. The hybridizations
involving GAs tended to have arc-shaped performance
curves across the feature subsets, with diminishing perfor-
mance for higher feature subset sizes. This was due to their
inability to converge once the feature spaces grew too large.

Fig. 11 shows the percentage within-one results. FRN
had the best AUC values and significantly outperformed all
nine comparison methods for all three testbeds. FRN’s best
within-one accuracy values were at least 1-2 percent better
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than the nearest comparison technique, though it generally
exceeded comparison methods by 3-4 percent.

4.4 Experiment 4: Ablation and Parameter Testing

Ablation testing was performed to evaluate the effective-
ness of the key components of FRN: subsumption relations
(SRs), parallel relations (PRs), and the semantic weighting
(SW). FRN was compared against versions of the algorithm,
where some of the three key components were not utilized.
For instance, the No-PR version ran the subsumption
relations and semantic weighting, but no parallel relations.
Similarly, the No-SW/SR version used wtðaxÞ as the feature
weight and only applied parallel relations (i.e., no sub-
sumption relations and no use of wsðaxÞ).

The ablation testing results are presented in Fig. 12. The
table shows AUC values for each ablation setting across the
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three testbeds, while the figures show the accuracy values
across all 37 feature set sizes. All three key components of
FRN contributed to the algorithm’s overall performance, as
evidenced by the fact that removing any component(s)
results in a considerable drop in AUC (i.e., at least 10-
15 points). With respect to the contribution of individual
components, SW seemed to have the biggest impact:
variants without SW resulted in the worst performance
(e.g., No-SW/PR, No-SW/SR, and No-SW). SR was next in
order of impact on AUC, followed by PR.

Two important parameters associated with FRN are the
subsumption and parallel relation thresholds (p and t from
Fig. 4). Fig. 13 shows the results for different combinations
of t and p. Four settings were used for t (0.0005, 0.005, 0.05,

and 0.5) and three for p (0.80, 0.90, and 1.00), resulting in

12 combinations. FRN performed well for values of t less

than or equal to 0.05, and for values of p greater than or

equal to 0.90. The results for these ranges of t and p were

fairly stable, as signified by the first six rows of AUC values

in Fig. 13. For t ¼ 0:5 or p ¼ 0:80 (bottom six rows of AUC

values in Fig. 13), the subsumption/parallel relations were

applied too aggressively, resulting in diminished accuracy.
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Fig. 13. Accuracy results for FRN parameter testing.

Fig. 12. Accuracy results for FRN ablation testing.



It is worth noting that the parameter settings employed in
experiments 1-3 (i.e., t ¼ 0:05, p ¼ 0:90) did not yield the
best results.

4.5 Results Discussion

FRN had significantly higher best accuracy and best
percentage within-one values than all 57 comparison
conditions, 19 selection methods (univariate, multivariate,
and hybrid) across three testbeds (all p-values < 0.001).
FRN’s AUC for accuracy was significantly better than 54 out
of 57 comparison conditions while it significantly out-
performed 35 out of 38 comparison conditions in terms of
AUC for percentage within-one class. FRN, coupled with the
extended feature set, also outperformed WNG and the BOW
baseline. Furthermore, the ablation and parameter testing
results presented in experiment 4 suggest that all three key
components of FRN play an important role and that the
algorithm is not overly sensitive to different parameter
values for the subsumption and parallel relation thresholds.

In addition to selecting feature subsets capable of
providing enhanced sentiment classification performance,
FRN also has a faster runtime than many comparison
multivariate and hybrid feature selection methods. Table 7
shows the average runtimes for each feature selection
technique per fold (i.e., the sum of the fivefold runtimes
across the three testbeds, divided by 15). The runtimes are
for the amount of time needed to rank the feature space.
Since GA is a subset selection method, its number is the
average amount of time needed to run the GA on 100,000
features for a single fold. In order to allow a fair
comparison, the runtimes listed are all from the same
machine. As expected, univariate methods were the fastest
since they scored each attribute independently. CMIM,
FSH, and FRN had the next shortest runtimes, followed by
RFE hybridizations and PCA, with DTM and GA taking the
longest. The hybrid methods had shorter runtimes than
their multivariate counterparts since the multivariate
components of the hybrid techniques had smaller input
feature spaces to explore. Additionally, certain hybrid
methods outperformed their multivariate counterparts.
For instance, CHI/RFE and LL/RFE had better perfor-
mance than RFE on certain testbeds. Similarly, IG/GA and
CHI/GA outperformed GA on some data sets. These results
indicate that the use of univariate methods to rank input
features can improve accuracy and decrease runtimes for
multivariate methods. This is consistent with prior research
where hybrid GAs have outperformed standard ones [3].

5 CONCLUSIONS AND FUTURE DIRECTIONS

In this study, we proposed the use of FRN for improved
selection of text attributes for enhanced sentiment classifi-
cation. FRN’s use of syntactic relation and semantic
information regarding n-grams enabled it to achieve
improved results over various univariate, multivariate,
and hybrid feature selection methods. Based on the results
attained in this study, we have identified a few future
research directions. We believe that FRN may be suitable
for other text classification problems, where semantic
information is available (e.g., topic, affect, and style
classification). We also intend to explore additional poten-
tial feature relations. Furthermore, we would like to extend
the network by adding additional feature occurrence
measurements. In this study, we used feature presence
vectors. Other measurements, such as occurrence frequency
and various positional/distributional features, could be
added, resulting in a multidimensional FRN. Alternate
semantic weighting mechanisms could also be explored.
Another potential avenue we intend to explore is the
development of hybrid feature selection methods that
incorporate FRN in conjunction with other multivariate
selection techniques.
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