%rterw SPECIAL ISSUE: BUSINESS INTELLIGENCE RESEARCH

METAFRAUD: A META-LEARNING FRAMEWORK FOR
DETECTING FINANCIAL FRAUD

Ahmed Abbasi
Mclintire School of Commerce, University of Virginia,
Charlottesville, VA 22908 U.S.A. {abbasi@comm.virginia.edu}

Conan Albrecht, Anthony Vance, and James Hansen
Information Systems Department, Marriott School of Management, Brigham Young University,
Provo, UT 84606 U.S.A. {ca@byu.edu} {anthony@vance.name} {james_hansen@byu.edu}

Appendix A

Comparing Context-Based Classifiers Against Baseline Classifies
Using Regulators’ Cost Settings I

Thisappendix reportstheresultsfor the baselineand yearly/quarterly context-based classifierswhen using the 1: 10 regul ator cost setting. Since
the AUC valuesare computed acrossdifferent cost settings (and are therefore the samefor theinvestor and regul ator situations), wereport only
the legitimate/fraud recall rates. Overal AUC values as well as results for the investor cost setting (1:20) can be found in the subsection
“Comparing Context-Based Classifiers Against Baseline Classifiers’ of the main paper.

Table Al showstheresultsfor the baseline classifiers. TablesA2 and A3 show theresultsfor theyearly and quarterly context-based classifiers
(i.e., the 14 classifiers coupled with the 84 and 336 yearly/quarterly context-based features, respectively). For all three feature sets, the most
bal anced results were attained using Logit. In comparison with the baseline classifiers, the yearly and quarterly context-based classifiers had
fraud recall ratesthat were over 20 percent higher on average, coupled with slightly higher average legit recall values. Similar to theinvestor
situation, even when using regulators’ cost settings, the yearly and quarterly context-based classifiers' results were quite diverse with respect
to their legit and fraud recall rates.

Table Al. Baseline Results

Legit Fraud Legit Fraud

Classifier Prec. Rec. Prec. Rec. Classifier Prec. Rec. Prec. Rec.
SVM-Lin 91.0 60.1 6.4 315 ADTree 93.8 58.7 10.3 55.0
LogitReg 95.9 71.0 16.1 64.6 RandForest 95.1 72.7 15.3 57.0
Ja8 94.9 71.0 14.3 56.2 NBTree 95.0 89.8 27.7 45.2
BayesNet 95.3 77.6 17.7 55.8 REPTree 93.6 70.4 11.4 44.3
NaiveBayes 92.1 53.3 8.0 47.2 JRip 93.3 84.7 145 30.1
SVM-RBF 89.4 65.5 2.6 10.5 NNge 92.2 78.1 8.6 23.7
SVM-Poly 91.1 56.0 6.7 36.4 NeuralNet 92.1 60.0 8.0 40.1

MIS Quarterly Vol. 36 No. 4—Appendices/December 2012 Al

Abbasi et al./A Meta-Learning Framework for Detecting Financial Fraud

Table A2. Yearly Context-Based Classifiers

Legit Fraud Legit Fraud

Classifier Prec. Rec. Prec. Rec. Classifier Prec. Rec. Prec. Rec.
SVM-Lin 98.7 50.0 13.7 92.2 ADTree 97.6 65.5 16.9 81.2
LogitReg 96.7 83.5 26.0 67.0 RandForest 96.2 73.4 17.7 66.3
J48 93.6 84.1 15.2 33.0 NBTree 95.9 82.4 22.7 59.7
BayesNet 96.0 75.5 18.3 63.3 REPTree 95.5 63.2 13.3 65.5
NaiveBayes 97.6 61.0 15.5 82.9 JRip 94.6 70.7 13.5 53.1
SVM-RBF 94.1 64.9 11.4 52.6 NNge 93.9 74.7 13.1 44.0
SVM-Poly 97.9 60.0 15.5 85.1 NeuralNet 94.3 68.0 12.3 52.1

Table A3. Quarterly Context-Based Classifiers

Legit Fraud Legit Fraud

Classifier Prec. Rec. Prec. Rec. Classifier Prec. Rec. Prec. Rec.
SVM-Lin 98.1 65.6 17.6 85.1 ADTree 97.7 55.4 14.1 85.1
LogitReg 96.0 715 16.5 65.3 RandForest 93.6 95.5 32.0 24.7
J48 95.3 92.9 36.2 46.7 NBTree 93.6 93.9 26.6 25.7
BayesNet 95.2 69.5 14.4 59.7 REPTree 96.7 57.0 13.5 77.5
NaiveBayes 96.7 52.3 12.6 79.5 JRip 95.0 64.1 12.8 61.1
SVM-RBF 97.7 62.2 16.0 83.4 NNge 93.0 82.7 12.3 28.1
SVM-Poly 96.2 76.3 19.2 65.3 NeuralNet 94.1 67.0 11.9 51.6

Appendix B

Evaluating Stacked Classifiers Using Regulators’ Cost Settings I

Rhis appendix reports the results for the yearly, quarterly, and combined stack classifiers when using the 1:10 regulator cost setting. Tables
B1and B2 show thelegitimate and fraud recall resultsfor theyearly and quarterly stack classifiers. Not surprisingly, theincreased cost of false
positives (as compared to false negatives) for the regulator setting resulted in higher legitimate recall ratesrelative to the investor setting (see
the subsection “ Evaluating Stacked Classifiers’ for theinvestor setting results). For instance, theannual stack using atop-level Logit classifier
improved itslegitimaterecall rate by over 20 percent when using theregulator cost setting. Thisisimportant sinceit would result in 20 percent
fewer unnecessary audits (over 900 fewer based on our test bed), albeit with 13 percent fewer frauds detected. On average, the quarterly
context-based classifiers had 15 percent higher fraud recall and 7 percent lower legitimate recall rates.

Table B1. Yearly Stack Classifiers

Legit Fraud Legit Fraud

Classifier Prec. Rec. Prec. Rec. Classifier Prec. Rec. Prec. Rec.
SVM-Lin 98.3 69.8 19.8 86.1 ADTree 74.2 33.3 21.1 79.7
LogitReg 97.1 93.5 47.4 68.2 RandForest 82.5 35.2 24.2 64.5
J48 96.9 825 254 68.9 NBTree 82.7 36.2 24.9 66.5
BayesNet 96.8 85.7 28.9 67.5 REPTree 73.0 30.7 19.3 74.8
NaiveBayes 96.9 82.0 25.1 69.7 JRip 815 36.8 24.8 70.9
SVM-RBF 97.2 84.4 28.4 71.6 NNge 79.1 334 22.1 68.5
SVM-Poly 96.8 77.5 21.2 70.2 NeuralNet 75.0 32.7 20.8 76.0

A2 MIS Quarterly Vol. 36 No. 4—Appendices/December 2012

Abbasi et al./A Meta-Learning Framework for Detecting Financial Fraud

Table B2. Quarterly Stack Classifiers

Legit Fraud Legit Fraud

Classifier Prec. Rec. Prec. Rec. Classifier Prec. Rec. Prec. Rec.
SVM-Lin 98.2 68.5 19.0 85.8 ADTree 99.6 67.7 20.6 96.8
LogitReg 97.4 86.9 32.8 73.6 RandForest 97.7 77.2 23.1 79.2
J48 98.3 70.7 20.2 85.8 NBTree 99.0 71.7 21.8 91.4
BayesNet 98.4 82.3 29.1 84.1 REPTree 98.8 68.0 19.6 90.5
NaiveBayes 97.4 68.5 17.8 79.0 JRip 99.0 67.9 19.9 92.4
SVM-RBF 99.2 84.5 33.9 92.2 NNge 97.5 74.2 20.7 78.0
SVM-Poly 98.7 69.5 20.3 89.7 NeuralNet 97.9 77.0 234 81.2

Table B3 showstheresultsfor the combined stack classifiers, which used the yearly and quarterly context-based classifiers' classificationsas
input. Aswiththeinvestor cost setting, the combined stacksusing the regulator cost setting leveraged the enhanced legitimaterecall ratesfrom
the yearly stacks and the improved fraud recall associated with the quarter stacks for enhanced, and generally more balanced performance.
For instance, the combined stack using a L ogit top-level classifier improved fraud recall by 4 percent over the annual stack, while providing
somewhat comparable legitimate recall.

Legit Fraud Legit Fraud

Classifier Prec. Rec. Prec. Rec. Classifier Prec. Rec. Prec. Rec.
SVM-Lin 97.8 80.3 25.7 79.0 ADTree 99.1 82.0 30.5 91.4
LogitReg 97.5 93.1 47.4 72.2 RandForest 96.4 96.1 56.4 57.9
J48 97.2 85.0 29.1 715 NBTree 98.8 79.9 27.6 88.5
BayesNet 97.7 86.1 321 76.0 REPTree 98.6 79.9 27.2 87.3
NaiveBayes 97.3 91.4 41.7 70.9 JRip 98.7 82.3 29.8 87.0
SVM-RBF 98.4 85.4 33.2 83.9 NNge 95.3 94.4 41.2 45.7
SVM-Poly 97.2 93.0 46.1 69.2 NeuralNet 98.6 82.0 294 86.6

Appendix C

Evaluating Adaptive Semi-supervised Learning using Regulators’ Cost Settings B

This appendix reportsthe results for the adaptive semi-supervised learning (ASL) classifierswhen using the 1:10 regul ator cost setting. Table
C1 showsthe legitimate and fraud recall rates. On average, using ASL improved legitimate and fraud recall by 4.7 percent and 2.2 percent,
respectively. Many of the classifiers attained legitimate recall rates over 90 percent. For instance, running ASL with the Logit classifier
resulted in the correct classification of approximately 95 percent of the legitimate firm instances. These settings could provide a more
practicable decision aid for regulators since the number of false positives would be more manageable (5 percent, or 237 of our legitimate test
instances), while till identifying afair amount of fraud (77 percent, or 315 of our fraud test instances).

MIS Quarterly Vol. 36 No. 4—Appendices/December 2012 A3

Abbasi et al./A Meta-Learning Framework for Detecting Financial Fraud

Table C1. Adaptive Semi-Supervised Learning

Legit Fraud Legit Fraud

Classifier Prec. Rec. Prec. Rec. Classifier Prec. Rec. Prec. Rec.
SVM-Lin 98.2 88.1 36.9 80.9 ADTree 99.2 89.3 42.5 91.4
LogitReg 98.0 95.0 57.1 77.0 RandForest 97.1 96.5 62.2 66.7
Ja8 97.5 92.2 44.5 72.6 NBTree 98.7 89.5 41.6 86.8
BayesNet 98.1 92.0 46.2 79.2 REPTree 98.4 88.0 375 83.6
NaiveBayes 97.5 92.4 45.4 72.9 JRip 98.6 88.0 38.1 85.6
SVM-RBF 98.7 87.9 38.3 87.0 NNge 96.1 98.5 75.7 54.0
SVM-Poly 97.6 92.8 46.9 73.3 NeuralNet 98.7 86.1 35.0 87.0

Appendix D

Analysis of Error Costs and Savings for the Regulators’ Cost Setting I

We conducted in-depth analysis of thefinancial impact of various components of M etaFraud relative to the baseline and comparison classifiers
for the regulator cost setting (1:10). Applying a cost of $443,000 to each fal se positive and $4,100,000 to each fal se negative, we computed
the error cost per firm-year for each technique evaluated in thefirst three subsections of the “ Evaluation” section of the main paper (H1-H4),
including the baseline, context-based classifiers, stack classifiers, and ASL. Table D1 shows the mean error cost results (in thousands of
dollars), averaged acrossthe 14 classifiers, for each of the aforementioned approaches. Thefirst three columns depict the mean cost of false
positives, mean cost of false negatives, and mean error cost per firm-year. Inorder to provide context, we also computed two naive baselines:
theerror costs of auditing every firm (or none) in our test bed. For the former, thiscost would simply be $443,000 multiplied by the 4,735 legit
instances, while for the latter, it would be $4,100,000 multiplied by the 409 fraud cases in the test set. In both cases, these total costs were
divided by the total number of test firm-years to give the costs per case. These values are presented in the first two rows of Table D1 while
the last two columns provide an indication of how cost effective various approaches were relative to these two basic situations.

Based on the table, it is evident that each subsequent component of MetaFraud further improved error costs (and savings) over the baseline
classifiersaswell asthe two basic situations. Interestingly, the baseline classifiers only provided a savings of $120.9M over not auditing any
firms, underscoring the potentially gravefinancial ramificationsof using highly inaccuratefraud detection methodsasdecisionaids. Incontrast,
using ASL provided savings of $1.1B over not auditing at all.

Table D1. Mean Error Costs and Savings for Various Approaches

Cost of

False Cost of False | Total Error Cost Savings vs. Savings vs.

Approach Positives Negatives Per Instance Audit All Audit None
Audit All $407.8 $0.0 $407.8 $0.0 ($81.8)
Audit None $0.0 $326.0 $326.0 $81.8 $0.0
Baseline Classifiers $122.7 $186.2 $308.9 $98.9 $17.1
Yearly Context-based $122.6 $113.9 $236.5 $171.2 $89.4
Quarterly Context-based $113.3 $128.6 $241.9 $165.9 $84.1
Yearly Stacks $78.9 $93.5 $172.4 $235.4 $153.6
Quarterly Stacks $107.4 $45.5 $152.9 $254.9 $173.1
Combined Stacks $53.7 $80.1 $133.8 $274.0 $192.2
ASL $34.5 $71.4 $102.1 $305.7 $223.9

A4 MIS Quarterly Vol. 36 No. 4—Appendices/December 2012

Abbasi et al./A Meta-Learning Framework for Detecting Financial Fraud

Table D2 displaysthe mean error cost results (in thousands of dollars) for MetaFraud (MF) and the three comparison methods. MF simproved
total error cost was attributable to enhanced false positive and false negative costs over al seven comparison settings. From an error cost
perspective, MF s enhanced performance over Cecchini et a. (2010) was largely attributable to augmented costs for false positives.

Table D2. Mean Error Costs and Savings for MetaFraud and Comparison Methods

Cost of Cost of Total Error

False False Cost Per Savings vs. | Savings vs.

Approach Positives Negatives Instance Audit All Audit None
MetaFraud $40.0 $60.6 $100.5 $307.2 $225.5
Cecchini et al. 2010 $82.2 $67.0 $149.2 $258.6 $176.8
Kirkos et al. 2007 - BayesNet $112.5 $118.8 $231.2 $176.5 $94.8
Kirkos et al. 2007 — 1D3 $58.3 $123.5 $181.8 $225.9 $144.1
Kirkos et al. 2007 - NeuralNet $129.4 $106.8 $236.2 $171.6 $89.8
Gaganis 2009 - NeuralNet $122.6 $75.7 $198.4 $209.4 $127.6
Gaganis 2009 — LogitReg $117.2 $90.9 $208.1 $199.7 $117.9
Gaganis 2009 — SVM-Lin $117.6 $90.9 $208.4 $199.4 $117.6

Table D3 shows the results when using M etaFraud with the comparison methods' ratios, while D4 showsthe resultsfor Tri-Training using the
baseline and three comparison sets of ratios. Using MetaFraud with the comparison ratios improved total error cost per firm-year by at least
$32.5K t0 $89.1K over the comparison approachesin TableD2. Similarly, theresultsin Table D4 shed light on the effectiveness of MetaFraud
over aternate adaptive learning methods.

Table D3. Mean Error Costs and Savings for MetaFraud Using Comparison Methods’ Ratios

Cost of False | Cost of False Total Error Cost Savings vs. Savings vs.

Approach Positives Negatives Per Instance Audit All Audit None
MF-Cecchini $56.9 $59.8 $116.7 $291.1 $209.3
MF-Kirkos $80.2 $67.0 $147.1 $260.6 $178.9
MF-Gaganis $69.3 $74.1 $143.5 $264.3 $182.5

Table D4. Mean Error Costs and Savings for Tri-Training Using Baseline and Comparison Ratios

Cost of
False Cost of False | Total Error Cost | Savings vs. Savings vs.
Approach Positives Negatives Per Instance Audit All Audit None
TT-Cecchini-BayesNet $56.9 $78.1 $135.0 $272.7 $191.0
TT-Kirkos-Logit $118.5 $74.9 $193.4 $214.4 $132.6
TT-Gaganis-J48 $96.5 $86.9 $183.4 $224.4 $142.6
TT-Baseline-BayesNet $64.3 $81.3 $145.6 $262.1 $180.4

Appendix E

Analysis of Error Costs and Savings for the Investors’ Cost Setting I

Thisappendix presentsanalysisof thefinancial impact of various components of MetaFraud rel ativeto the baseline and comparison classifiers
for the investor cost setting (1:20). We derived the cost of false negatives as a 20 percent drop in the median stock value ($120M) across all
firm instances in our data set (Beneish 1999a, 1999b; Cox and Weirich 2002). The cost of false positives was the opportunity cost of failing

MIS Quarterly Vol. 36 No. 4—Appendices/December 2012 A5

Abbasi et al./A Meta-Learning Framework for Detecting Financial Fraud

to invest in alegitimate firm; this was computed as a 1 percent increase in the median stock value. Hence, for the investor setting, we used
false negative costs of $24 million and fal se positive costs of $1.2 million. It isimportant to note that these val ues are approximations of the
median total costs for such firm instances, across al investors. Costsfor individual investors would vary depending upon the percentage of
total stock acquired in a specific firm.

Using these two values, we computed the error cost for each technique evaluated in the first three subsections of the “Evaluation” section of
the main paper (H1-H4), including the baseline, context-based classifiers, stack classifiers, and ASL. Table E1 shows the mean error cost
results (in thousands of dollars), averaged acrossthe 14 classifiers, for each of the aforementioned approaches. Thefirst three columns depict
the mean cost of false positives, mean cost of false negatives, and mean total error cost per firm-year.

From the table, it is apparent that the various components of MetaFraud improved error costs over the baseline classifiers. In general, error
costs decreased with each subsequent phase of MetaFraud with the exception of the quarterly stack classifiers, which had lower false negative
rates as compared to the combined stacks. Thiswas largely attributable to the fact that five of the quarterly stack classifiers had fraud recall
rates above 90 percent (see TableB2in Appendix B for details). Giventhehefty costsexacted by false negativesoninvestors, these classifiers
high fraud recall rates caused the quarterly stacks to have the lowest mean total false negative costsin Table E1. However, ASL still had the
best total error cost, dueto arelatively better balance between fal se positive and false negative costs. ASL provided cost savings of over $880K
per instance over the baseline classifiers.

Table E1. Mean Error Costs and Savings for Various Approaches

Cost of False Cost of False Total Error Cost Per
Approach Positives Negatives Instance
Baseline Classifiers $372.0 $1,002.0 $1,374.0
Yearly Context-based $392.6 $559.5 $952.2
Quarterly Context-based $348.7 $661.4 $1,010.1
Yearly Stacks $279.3 $435.0 $714.3
Quarterly Stacks $348.7 $201.3 $550.0
Combined Stacks $198.6 $388.0 $586.5
ASL $121.3 $371.8 $493.2

Table E2 displays the mean error cost per firm-year results (in thousands of dollars) for MetaFraud (MF) and the three comparison methods.
MF had the lowest fal se positive and fal se negative costs as compared to the seven comparison setting. From an error cost perspective, MF' s
enhanced performance over Cecchini et al. (2010) was once again largely attributable to augmented costs for false positives (approximately
$165K lower per instance).

Table E2. Mean Error Costs and Savings for MetaFraud and Comparison Methods

Cost of False Cost of False Total Error Cost Per

Approach Positives Negatives Instance
MetaFraud $114.5 $326.6 $441.1
Cecchini et al. 2010 $279.9 $340.6 $620.5
Kirkos et al. 2007 - BayesNet $383.3 $401.2 $784.5
Kirkos et al. 2007 — ID3 $293.7 $625.2 $918.9
Kirkos et al. 2007 - NeuralNet $395.2 $466.6 $861.7
Gaganis, 2009 - NeuralNet $381.6 $373.3 $754.9
Gaganis, 2009 - LogitReg $349.7 $438.6 $788.3
Gaganis, 2009 — SVM-Lin $370.0 $405.9 $775.9

Table E3 shows the results when using M etaFraud with the comparison methods' ratios, while E4 showstheresultsfor Tri-Training using the
baseline and three comparison sets of ratios. Using MetaFraud with the comparison ratiosimproved total error cost by at least $109K per firm-
year over the comparison results presented in Table E2. Similarly, based on the results presented in Table E4, MetaFraud outperformed Tri-
Training by $40K to over $162K in terms of error costs. The resultsin Table E4 shed light on the effectiveness of MetaFraud over alternate
adaptive learning methods.

A6 MIS Quarterly Vol. 36 No. 4—Appendices/December 2012

Abbasi et al./A Meta-Learning Framework for Detecting Financial Fraud

Table E3. Mean Error Costs and Savings for MetaFraud using Comparison Methods’ Ratios

Cost of False Cost of False Total Error Cost Per
Approach Positives Negatives Instance
MF-Cecchini $168.4 $317.3 $485.7
MF-Kirkos $320.3 $354.6 $674.9
MF-Gaganis $209.0 $349.9 $558.9

Table E4. Mean Error Costs and Savings for Tri-Training Using Baseline and Comparison Ratios

Cost of False Cost of False Total Error Cost Per
Approach Positives Negatives Instance
TT-Cecchini-BayesNet $207.6 $387.2 $594.9
TT-Kirkos-Logit $351.6 $363.9 $715.5
TT-Gaganis-J48 $367.0 $354.6 $721.5
TT-Baseline-BayesNet $227.9 $429.2 $657.2

Appendix F

Analysis of ASL and Combined Stacks Performance Across Test Years I

Prior research has noted that the average and median times needed to detect fraud are 2.8 and 2.65 years, respectively (Beneish 1999b). This
timewindow, which refersto the time between when the fraud is committed until thetimewhen it isfirst discovered and announced (generally
through media reports which precede the SEC’s AAERS), poses constraints on when fraud detection classifiers can be updated. Therefore, it
isimportant to analyze the impact of thelag (i.e., window length) between training data and test instances on detection performance. In this
appendix, we present results for ASL and combined stacks using different window sizes b, where the “dynamic” ASL and combined stacks
tested instances for agiven year a using al training data up to and including year a—b. We used values of 1-5 for b. Figure F1 showsthe
performance of the combined and dynamic stacks acrosstest years. Dynamic stack 1 denotesthe legitimate recall (left chart) and fraud recall
(right chart) when using aone-year window (i.e., b=1). In other words, this classifier used all data prior to the test year for training. Since
performancefor thisapproach was no different than that of the combined stacksin 2000, we only depict resultsfor Dynamic Stack 1 from 2001
onward. Similarly, for al dynamic stacks, we only display resultsfor years when their performance differed from the static combined stacks
(i.e., theyear 2000+b). Not surprisingly, smaller valuesfor b attained better legitimate/fraud recall rates, suggesting that the smaller thetime
window between the training and testing data, the better the performance. Dynamic stack 1 outperformed the combined stack by 3 percent to
4 percent on average in terms of legitimate and fraud recall. Reducing the window size by one year typically improved legitimate and fraud
recall rates by 0.5 percent to 1 percent.

Figure F2 shows the results for ASL and the dynamic ASL classifiers. As with the dynamic stacks, using smaller values for b improved
performance for dynamic ASL aswell, with Dynamic ASL 1 attaining the best legitimate recall and fraud. However, the performance gains
for dynamic ASL wereless pronounced than those attained by the dynamic stacks, as evidenced by the smaller variations between classifiers
in Figure F2 as compared to Figure F1.

Figure F3 shows the resultsfor ASL, Dynamic ASL 1, Combined Stacks, and Dynamic Stack 1. Since ASL/Combined stacks and Dynamic
ASL/Stack 1 represent significantly contrasting window sizes, they provide reasonable upper and lower limits on the performance of static and
dynamic ASL and combined stack classifiers. Comparing ASL against the Dynamic Stack 1 classifier, ASL had better legitimate recall across
test yearsand better fraud recall on 6 out of 7 years. Sincethe performancefor thedynamic ASL classifiersexceeded that of ASL, wecaninfer
that ASL virtually dominated the combined stacks with respect to legitimate and fraud recall for various window sizes.

MIS Quarterly Vol. 36 No. 4—Appendices/December 2012 A7

Abbasi et al./A Meta-Learning Framework for Detecting Financial Fraud

L
b

L Rega
1
]
2
F
£
L
~
~
(N
Fraud Reca

¥
1
1

L Reca
X

% Leg

Figure F2. Performance for ASL and Dynamic Stack Across Test Years

Figure F3. Performance of ASL and Combined Stack Across Test Years Using a Window Size of One
Year (b = 1) for Dynamic Classifiers

A8 MIS Quarterly Vol. 36 No. 4—Appendices/December 2012

Abbasi et al./A Meta-Learning Framework for Detecting Financial Fraud

Appendix G

Analysis of MetaFraud’s Base, Stack, and ASL Classifiers I

In this study, MetaFraud was run using the expanded feature space (comprised of organizational and industry context features), 28 context
classifiers(14 quarterly and 14 yearly), 14 stack classifiers, and ASL. Inthisappendix, we evaluate theimpact of model tuning on overall fraud
detection performance. The most obvious areas where model tuning could be performed would be to (1) tune the input (base) context-based
classifiers used by the combined stacks, in terms of quantity and composition; (2) similarly tune the stack classifiers used by ASL asinput;
and (3) tune the threshold used by ASL to guide inclusion of test casesin the training set during the next iteration. We focused on all three
areas. For each, we attempted to retrospectively derive near-optimal performancelevelsusing resultson thetest cases, in order to gaininsights
into potential optimal performance levels attainable using model tuning.

1. Tuning the Quantity and Composition of Context-Based Classifiers Utilized by the Sacks

For #2, we performed analysisto see which of the 28 base context-based classifierswere useful to the 14 stack classifiers' performance. Each
of the 14 stack classifiers was run using different combinations of underlying context-based classifiers. Dueto computational constraints, we
could not evaluate every single combination. With 2"— 1 possible combinations, setting n to 28 would have resulted in over 268 million
combinations for each stack classifier. Therefore, we set nto 14, and treated both the yearly and quarterly context-based classifiers as a pair
that were always simultaneously included or excluded. For instance, assuming that each combination could be represented asabinary string,
wherea*“1” indicated that aparticular classifier wasincluded whilea*0” signified exclusion, inthe combination“01111111111111,” thefirst
context-based classifier (SVM-Lin) would be excluded whilethe remaining 13 would beincluded. Thiswould resultin 26 classifiersincluded
(13 yearly and 13 quarterly), while both the yearly and quarterly SVM-Lin classifiers would be omitted. We ran all 16,383 resulting
combinations separately for each of the 14 stack classifiers. For each stack, the single setting that yielded the best performance on the test
instances, across hoth the regulator and investor cost settings, was reported. We refer to these results as local optima since considering the
yearly and quarterly classifiers as a dependent pair in the solution space causes us to exclude many viable solutions.

TablesG1 and G2 show theanalysisresults. Table G1 depictsthe number of underlying context-based classifiers employed by each combined
stack, as well as the resulting legitimate and fraud recall rates for the investor and regulator cost settings. Table G2 shows the performance
gains with respect to legitimate and fraud recall when using the local optima settings, as compared to using all 28 underlying context-based
classifiers. Asdepictedin Table G2, theselocal optimaresultedin averagegainsinlegitimaterecall of 1 percent to 2 percent and improvements
in fraud recall of 2 percent to 4 percent across the two cost settings. Based on Table G1, it is evident that the ideal quantity of underlying
context classifiers varied from 8 to 20, depending on the top-level classifier employed in the stack.

Table G1. Local Optima Performance of Combined Stack Classifiers for Investor and Regulator Settings

Investor Cost Setting (1:20) Regulator Cost Setting (1:10)
No. of Legit Fraud Legit Fraud

Classifier Classifiers Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
SVM-Lin 14 98.4 88.4 38.3 83.6 97.7 87.8 35.0 76.0
LogitReg 18 98.2 89.1 39.1 81.2 98.1 90.5 42.2 80.2
J48 10 98.6 77.1 24.8 87.8 98.3 83.4 30.2 83.1
BayesNet 16 98.5 81.2 28.3 85.8 98.5 85.7 34.0 85.1
NaiveBayes 14 98.3 84.7 31.9 83.1 97.7 91.2 42.4 74.8
SVM-RBF 12 99.0 76.9 25.4 91.0 98.3 86.0 33.9 83.1
SVM-Poly 20 97.5 88.9 36.6 74.1 98.1 87.7 36.2 80.7
ADTree 16 98.0 84.7 31.1 80.2 98.9 87.1 37.3 88.5
RandForest 8 98.5 81.8 28.8 85.3 98.2 84.5 31.5 82.4
NBTree 8 98.3 84.0 30.9 83.1 98.4 87.7 36.9 83.1
REPTree 8 98.5 81.1 28.1 85.3 98.3 88.1 37.3 82.2
JRip 14 98.7 82.0 29.6 87.5 98.4 86.3 34.6 84.1
NNge 16 97.3 87.9 33.8 71.4 97.4 90.1 38.7 72.1
NeuralNet 8 98.7 83.0 30.7 87.0 98.7 84.0 32.1 87.5

MIS Quarterly Vol. 36 No. 4—Appendices/December 2012 A9

Abbasi et al./A Meta-Learning Framework for Detecting Financial Fraud

Table G2. Performance Improvements for Local Optima Combined Stack Classifiers

Investor Cost Setting (1:20) Regulator Cost Setting (1:10)
Legit Fraud Legit Fraud
Classifier Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
SVM-Lin 0.4 8.4 12.4 2.5 -0.1 7.6 9.3 -3.0
LogitReg 0.4 4.2 8.2 2.9 0.7 -2.6 -5.2 8.0
J48 1.4 -0.5 2.6 13.5 1.1 -1.6 1.1 11.6
BayesNet 0.5 3.4 4.0 3.7 0.9 -0.4 1.8 9.1
NaiveBayes 0.9 -6.0 -7.9 11.5 0.3 -0.2 0.7 3.9
SVM-RBF 0.1 25 2.1 1.0 -0.1 0.6 0.7 -0.7
SVM-Poly 0.0 0.0 0.1 0.2 0.9 -5.3 -9.9 11.5
ADTree -1.1 8.6 6.1 -12.2 -0.2 5.2 6.8 -2.9
RandForest 1.7 -13.4 -24.2 22.5 1.9 -11.6 -25.0 24.5
NBTree -0.5 7.0 5.9 -5.9 -0.4 7.8 9.3 -5.4
REPTree -0.2 5.9 4.6 -2.7 -0.4 8.2 10.0 -5.1
JRip -0.1 1.9 1.7 -1.3 -0.2 4.0 4.9 -2.9
NNge 0.7 -0.5 1.7 8.1 2.1 -4.2 -2.5 26.4
NeuralNet -0.1 2.7 2.8 -1.0 0.1 2.0 2.8 1.0
Stack Classifiers
Bayeshlet Naivel SR SVN-P ADTre¢ RandForst NETrée REPTree JRip Nnge HHet
;_
RandFors
NETrée
- REPTre
3?_; IRip
ks Hnge
g Kiet
o SWM-L
& i Logh
g s
i Bayeshet
Naivel
SVMV-R
SVM-P
= ADTres
£ | RandForsy
5 NETree
o REPTrae
IRip
Nnge
NN &t

Table G2. Performance Improvements for Local Optima Combined Stack Classifiers

In order to analyze theinclusion frequency/patterns of the underlying context-based classifiers acrossthe 14 stack classifiers, we constructed
aco-occurrence matrix (depicted in Figure G1). Inthe matrix, colored cellsindicate that a particular context classifier (row) wasincludedin
the stack classifier (column). For example, the Logit stack classifier (second column) used Logit, J48, BayesNet, SVM-RBF, ADTree,
RandomForest, NBTree, and JRip, and NNgeclassifiers (yearly and quarterly). Based onthefigure, it isevident that while certain underlying

Al0 MIS Quarterly Vol. 36 No. 4—Appendices/December 2012

Abbasi et al./A Meta-Learning Framework for Detecting Financial Fraud

context classifierswere utilized morethan others, all underlying context-based classifierswereused by at least four stack classifiers. Classifiers
such as BayesNet and JRip were each used by more than 10 stack classifiers. On average, each underlying context-based classifier was used
by 6.5 stack classifiers. The results suggest that alarge variety of diverse underlying context-based classifiers are essential to the success of
the stack classifiersin MetaFraud.

2. Tuning the Quantity and Composition of Stack Classifiers

Having identified a set of local optima solutions for each stack classifier by evaluating different combinations of underlying (base) context-
based classifiers, we turned our attention to exploring the impact of utilizing different quantities of stack classifiers on MetaFraud’s overall
performance (#3). We repeated the procedure taken in the previous analysis; all 2" — 1 stack combinations were evaluated. Each of the 14
stackswasrun using thelocal optima settingsdescribed in Table G1 and Figure G1. All 16,383 combined stack combinations were eval uated.
The setting yielding the best overall results for MetaFraud was retained. We labeled this setting “MF-BC/SC” since both the base and stack
classifier arrangements had been tuned.

Theresultsare depicted in Table G4. MetaFraud (MF) denotes the default setting where all 14 stack classifiers wereincorporated, each using
the 28 underlying context-based classifiersasinput. MF-BC indicatesthe setting whereall 14 local optimastack classifierswereincorporated.
MF —BC/SC represents the setting where the subset of the 14 local optima stacks providing the best performance were retained (using the
approach described in the previous paragraph). The performance gap between MF-BC and MetaFraud signifies the net gain attributable to
tuning the base classifier arrangement, while the gap between MF-BC/SC and MF-BC indicatesthe marginal gain attributableto using the best
arrangement of stack classifiers. The resultsindicate that configuring the set of context-base classifiers used with each stack, aswell asthe
arrangement of stack classifiers employed, both improve performance. Comparing MF-BC/SC against MF, the net gainsin legitimate recall
were between 1.5 percent and 2 percent, whilefraud recall improved by 0.5 percent to 1.5 percent. Thesegainsresulted in error cost reductions
of $13K per firm-year for the regulator setting and $25K per instance for the investor setting.

Table G4. Performance of MetaFraud With and Without Tuning

Regulators (Cost 1:10) Investors (Cost 1:20)
No. Legit Fraud Cost Per Legit Fraud Cost Per
Setting of SC | Prec. | Rec. | Prec. | Rec. Instance | Prec. | Rec. | Prec. | Rec. Instance
MetaFraud (MF) 14 98.3 90.2 41.8 81.5 $100.5 98.4 89.6 40.8 82.9 $441.1
MF - BC 14 98.3 90.5 | 429 82.4 $96.1 98.4 90.5 | 429 83.1 $427.4
MF - BC/SC 10 98.4 92.1 47.6 83.1 $87.3 98.4 91.1 44.8 83.4 $415.5

3. Evaluating the Impact of Different ASL Thresholds on Fraud Detection Performance

MetaFraud wasrun using an ASL threshold of 14. In other words, al 14 combined stack classifiers had to agree on each instance added to the
training model during the following iteration of the adaptive semi-supervised learning mechanism. We explored the impact of using four
different thresholds: n, n-2, n-4, and n-6. Thesefour thresholdswere appliedto MFaswell asMF-BC/SC. Hence, MF wasrun using thresholds
of 14, 12, 10, and 8, while MF-BC/SC (which only used 10 stack classifiers) was run using thresholds of 10, 8, 6, and 4.

Theresults are displayed in Table G5. For MF, using an ASL threshold of 10 yielded the best performance in terms of |egitimate and fraud
recall aswell aserror cost per instance, for both theinvestor and regulator settings. Usingan ASL threshold of 8 provided the best performance
for MF-BC/SC; this setting resulted in the best overall performance across all settings investigated in the appendix, with legitimate and fraud
recall rates above 92 percent and 84 percent, respectively. MF —BC/SC with an ASL threshold of 8 improved legit recall by over 3 percent
and fraud recall by over 2 percent and lowered regulator and investor costs by approximately $19,000 and $68,000 per firm-year, respectively,
over MF using an ASL threshold of

MIS Quarterly Vol. 36 No. 4—Appendices/December 2012 All

Abbasi et al./A Meta-Learning Framework for Detecting Financial Fraud

Table G5. Impact of ASL Threshold on Performance

Regulators (Cost 1:10) Investors (Cost 1:20)

ASL Legit Fraud Cost Per Legit Fraud Cost Per

Setting Thresh Prec. Rec. | Prec. | Rec. Instance Prec. Rec. | Prec. | Rec. Instance
14 98.3 90.2 41.8 81.5 $100.5 98.4 89.6 40.8 82.9 $441.1
MetaFraud 12 98.3 89.8 41.0 82.2 $99.8 98.3 89.2 39.7 82.4 $455.4
(MF) 10 98.4 91.8 46.6 82.6 $90.0 98.5 90.0 42.0 83.6 $422.9
8 98.3 89.5 40.1 81.7 $102.7 98.3 89.1 39.6 82.6 $451.6
10 984 92.1 47.6 83.1 $87.3 98.4 91.1 44.8 83.4 $415.5
MF - BC/SC 8 98.5 92.8 50.2 84.1 $81.2 98.6 924 49.1 84.8 $373.3
6 98.3 91.5 455 82.2 $92.8 98.4 91.0 44.4 82.9 $425.7
4 98.4 91.0 44.4 83.1 $91.7 98.4 90.8 43.7 82.4 $437.4

Theanalysisperformedin thisappendix suggeststhat tuning thebase classifier and stack classifier arrangementsaswell as selecting athreshold
for ASL can collectively further improve detection performance by 2 percent to 3 percent. However, theresults presented for MF-BC/SC with
an ASL threshold of 8 were attained by retrospectively fitting the model configurations to the test data. Hence, they represent a
theoretical/potential local optimalevel of performance. In practice, tuning the base and stack classifierson thetraining datawithout over-fitting
the data represents an interesting and important future research direction. Similarly, identifying methods for configuring the ASL threshold
to better exploit new information signifiesaworthwhilefuture endeavor. However, itisimportant to notethat even in the absence of extensive
tuning, MetaFraud attained excellent performance results. Given that the proposed framework provides enhanced fraud detection capabilities
without considerable model tuning suggests that MetaFraud is highly robust and not overly sensitive to different configuration issues or
parameter settings.

References

Beneish, M. D. 1999a. “The Detection of Earnings Manipulation,” Financial Analysts Journal (55:5), pp. 24-36.

Beneish, M. D. 1999b. “Incentives and Penalties Related to Earnings Overstatements that Violate GAAP,” The Accounting Review (74:4),
pp. 425-457.

Cecchini, M., Aytug, H., Koehler, G., and Pathak, P. 2010. “ Detecting Management Fraud in Public Companies,” Management Science (56:7),
pp. 1146-1160.

Cox, R.A.K.,and Weirich, T. R. 2002. “The Stock Market Reaction to Fraudulent Financial Reporting,” Managerial Auditing Journal (17:7),
pp. 374-382.

Gaganis, C. 2009. “Classification Techniquesfor the | dentification of Falsified Financial Statements: A Comparative Analysis,” Inter national
Journal of Intelligent Systems in Accounting and Finance Management (16), pp. 207-229.

Kirkos, E., Spathis, C., and Manolopoulos, Y. 2007. “DataMining Techniquesfor the Detection of Fraudulent Financia Statements,” Expert
Systems with Applications (32), pp. 995-1003.

Zhou, Z. and Li, M. 2005. “Tri-Training: Exploiting Unlabeled Data Using Three Classifiers,” |EEE Transactions on Knowledge and Data
Engineering (17:11), pp. 1529-1541.

Al12 MIS Quarterly Vol. 36 No. 4—Appendices/December 2012

