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Detecting Fake Medical Web Sites Using Recursive Trust Labeling
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Fake medical Web sites have become increasingly prevalent. Consequently, much of the health-related infor-
mation and advice available online is inaccurate and/or misleading. Scores of medical institution Web sites
are for organizations that do not exist and more than 90% of online pharmacy Web sites are fraudulent. In
addition to monetary losses exacted on unsuspecting users, these fake medical Web sites have severe public
safety ramifications. According to a World Health Organization report, approximately half the drugs sold
on the Web are counterfeit, resulting in thousands of deaths. In this study, we propose an adaptive learning
algorithm called recursive trust labeling (RTL). RTL uses underlying content and graph-based classifiers,
coupled with a recursive labeling mechanism, for enhanced detection of fake medical Web sites. The pro-
posed method was evaluated on a test bed encompassing nearly 100 million links between 930,000 Web sites,
including 1,000 known legitimate and fake medical sites. The experimental results revealed that RTL was
able to significantly improve fake medical Web site detection performance over 19 comparison content and
graph-based methods, various meta-learning techniques, and existing adaptive learning approaches, with
an overall accuracy of over 94%. Moreover, RTL was able to attain high performance levels even when the
training dataset composed of as little as 30 Web sites. With the increased popularity of eHealth and Health
2.0, the results have important implications for online trust, security, and public safety.
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1. INTRODUCTION

Fake Web sites are misrepresentative sites posing as legitimate online sources of in-
formation, goods, and/or services [Abbasi and Chen 2009a]. The three major types
of fake Web sites (spoof, concocted, and Web spam) collectively generate billions of
dollars in fraudulent revenue [Dinev 2006]. Spoof Web sites engage in identity theft
by mimicking legitimate Web sites and targeting those Web sites’ customers through
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phishing emails [Dinev 2006; Fu et al. 2006]. Concocted Web sites attempt to appear
as unique, legitimate commercial entities in order to engage in failure-to-ship fraud
[Abbasi and Chen 2009a; Chua and Wareham 2004; Chua et al. 2007]. Web spam
sites engage in black-hat search engine optimization (using content and/or link spam-
ming techniques) in order to bolster their search rank, often for commercial incentives
[Gyongyi and Garcia-Molina 2005].

These three types of fake Web sites span numerous domains [Abbasi et al. 2010;
Grazioli and Jarvenpaa 2000]. One emerging domain is fake medical Web sites; which
include fraudulent online pharmacies, health information providers, and medical in-
stitution Web sites. Fake medical Web sites have important implications for online
trust and security, particularly since people are increasingly turning to the Web as a
source for health-related information and products [Song and Zahedi 2007; White and
Horvitz 2009]. While the primary cost exacted on Internet users by fake Web sites can
be quantified in monetary terms, in the case of fake medical Web sites, these monetary
costs are coupled with dire social ramifications. For instance, online pharmacies that
fail to ship essential medication (or sell counterfeit drugs) and Web sites intentionally
providing inaccurate or fictitious medical information have major implications per-
taining to Internet users’ health and wellness [Hesse et al. 2010]. According to studies
conducted by the U.S. Food and Drug Administration and the World Health Organi-
zation, thousands of deaths have been attributed to fake medical Web sites, while the
number of people visiting such sites continues to increase dramatically [Easton 2007;
Krebs 2005].

Prior fake Web site detection research has focused on the application of content or
graph-based detection methods to concocted or spoof e-commerce Web sites targeting
end users [Abbasi and Chen 2009a; Liu et al. 2006] or Web spam sites targeting search
engines [Becchetti et al. 2008; Wang et al. 2008]. The lack of prior work on fake med-
ical Web sites (despite their increased prevalence), coupled with the public’s growing
reliance on them, point to an urgent need to evaluate the efficacy of detection methods
for such Web sites [Luo 2008; Zahedi and Song 2008]. Considering that in the case
of fake medical Web sites, improvements in detection have important social implica-
tions stemming from Internet user’s health and wellness, a comprehensive examina-
tion of the performance of state-of-the-art content and graph-based techniques is well
motivated.

In this study, we propose an adaptive learning algorithm called recursive trust label-
ing (RTL). RTL uses underlying content and graph-based classifiers designed to exploit
the unique characteristics of fake medical Web sites, coupled with a recursive labeling
mechanism. Given the complexities associated with medical content, the content clas-
sifier incorporates several novel components, including a medical thesaurus. Similarly,
RTL’s graph classifier employs characteristics closely aligned with the unique linkage
tendencies exhibited by medical Web sites. The recursive labeling mechanism effec-
tively leverages the information provided by these two classifiers towards enhanced
detection of fake medical Web sites. The proposed algorithm was compared against
numerous existing content and graph-based methods. Experimental results revealed
that RTL yielded more accurate results than comparison classifiers and also outper-
formed meta-learning strategies such as stacking. RTL was more effective than exist-
ing adaptive learning methods even when the quantity of training data was very small
and imbalanced; a situation that is often encountered when detecting fake Web sites.
RTL’s improved performance was attributable to its ability to better leverage content
and linkage-related characteristics of online medical content (through the content and
graph classifiers), as well as the effectiveness of the recursive labeling mechanism.
Given the hefty social cost exacted by fake medical Web sites, the results of this study
have important implications.
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Fig. 1. Categories of fake medical Web sites.

2. FAKE MEDICAL WEB SITES

There has been a growing emphasis on the development of information technologies
capable of providing users with easy access to the copious amounts of medical con-
tent available on the Web [Chen et al. 2003; Gaudinat et al. 2007; Luo 2008]. These
technologies, which are critical to the continued success of eHealth and Health 2.0, are
highly susceptible to the prevalence of fake medical Web sites, resulting in major infor-
mation quality degradation and public safety concerns [Eysenbach 2008; Hesse et al.
2010; Hughes et al. 2008; Price and Hersh 1999]. Figure 1 shows examples of different
categories of fake medical Web sites, with example screenshots of various fake sites.
Common categories include fake online pharmacies, fake health information providers
(e.g., infomediaries and medical blogs), and phony institution Web sites (e.g., medical
universities, hospitals, clinics, etc.).

Fake online pharmacy Web sites sell fake drugs and/or fail to ship the agreed-upon
goods altogether [Armin 2010; Easton 2007; Greenberg 2008]. Due to the growth in
the usage of Internet pharmacies [Boggan 2009; Wilford et al. 2006], fake pharmacy
Web sites have become highly pervasive. According to a Food and Drug Administra-
tion study, more than 90% of the 12,000 Internet pharmacies examined were fraudu-
lent [Krebs 2005]. As a result, the number of users visiting fake pharmacy sites has
tripled since 2008; on average, fake online pharmacies each get 100,000 hits per year
[Greenberg 2008]. Consequently, according to the World Health Organization, fake on-
line pharmacies are responsible for thousands of deaths [Boggan 2009; Easton 2007].
In one instance, investigators in the UK found fake pills laced with rat poison, cement,
floor polish, chalk, rice flour, and lead paint [Boggan 2009].

Fake health information Web sites provide fictitious, false, misleading, or biased
medical information about nutrition, exercise, diet, treatment options, surgery, drug
side effects, miracle remedies, hospital rankings, etc. [Aphinyanaphongs and Aliferis
2007; Wang and Richard 2007]. These Web sites, which are often linked to fake online
pharmacies and health/medical equipment sellers, are commonly used as an advertis-
ing and propaganda dissemination mechanism. Fake health information Web sites are
especially problematic since recent research has noted that while 61% of Americans
search for healthcare information online, 75% do not check the validity of the informa-
tion sources [Pew Internet and American Life Project 2009; White and Horvitz 2009].

Fake medical institution Web sites include those attempting to appear as legitimate
hospitals or medical universities. These Web sites are often used for medical identity
theft or to defraud individuals suffering from specific ailments [Parloff 2010]. Table I
presents a summary of the three major categories of fake medical Web sites, including
examples of potential ramifications. The grave social implications associated with fake
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Table I. Summary of Fake Medical Web Site Categories

Category Problem Description Fraud Examples
Online Engage in failure-to-ship fraud A 58-year-old Canadian woman died after taking
Pharmacies and/or the sale of counterfeit drugs. fake sleeping pills laced with strontium, arsenic,

aluminum, and uranium.
According to a 2005 FDA study, An American woman died after taking medicine
nearly 11,000 of the 12,000 online laced with aluminum.
pharmacies examined were fake. A 22-year-old British girl died after taking

fake medication for anxiety, stomachache,
and insomnia.

Health Provide inaccurate, misleading, or The developer of the alternative medicine Web
Information fictitious health related site letstalkhealth.com was arrested in 2009 on
Providers information. various felony charges, including falsely

representing a cure for cancer.
According to a 2006 Pew Research
Center report, 75% of Americans
do not check the validity of online
healthcare information sources.

Medical Engage in medical identity theft A group of 14 fraudsters in China developed 7
Institutions (including insurance and medicare fake military hospital Web sites used to defraud

information) and/or monetary fraud. nearly 10,000 people.
Fake US veterans’ hospital Web sites were
used to deceive former soldiers suffering from
asbestos exposure related illnesses.

Sources: [An 2010; Armin 2010; Boggan 2009; Parloff 2010]

medical Web sites make their accurate detection an issue of paramount importance
[Aldhous 2005].

Online communities and regulatory agencies that maintain databases of known
fake Web sites based on manual observations are not capable of keeping up with the
plethora of fakes emerging on a daily basis [Abbasi et al. 2010]. For instance, the Na-
tional Association of Boards of Pharmacies’ list of fraudulent online pharmacies only
covers a small percentage of the actual number in existence. Consequently, prior re-
search has focused on automated learning-based approaches for detecting fake Web
sites. A review of prior work on fake Web site detection is presented in the ensuing
section. We present our approach for fake medical Web site detection in Section 4.

3. FAKE WEB SITE DETECTION

Two categories of automated learning-based techniques have been applied to fake
Web site detection: content and graph-based methods. Content-based methods utilize
machine learning algorithms coupled with content-based features called fraud cues
[Abbasi and Chen 2009b]. Graph-based methods use properties of the Web site hy-
perlink graphs to deduce whether a particular Web site is legitimate or fake [Gyongyi
and Garcia-Molina 2005; Zhang et al. 2006]. These two categories are reviewed, along
with prior fusion strategies for combining content and graph information, and adap-
tive learning methods.

3.1. Content-Based Methods

Fraudsters frequently expedite the development of fake Web sites by using auto-
matic content generation techniques to mass produce Web pages [Urvoy et al. 2008].
This often causes fake Web sites to appear templatic: that is, there are potential
content-based design similarities between new and existing fake Web sites [Fetterly
et al. 2004]. These similarities (called “fraud cues”), can be exploited using machine
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Table II. Selected Prior Studies on Content-Based Methods for Fake Web Site Detection

Study Site Type Features Techniques Test Bed and
Evaluation Results

Chou et al.
2004

Spoof HTML tags, URL text,
image hashes, link
information

Test based scoring
mechanism (called
TSS)

719 legit and fake
Web sites; 67.8%
accuracy

Drost and
Scheffer
2005

Web Spam Body text tokens,
redirections, characters in
URLs, number of in/out
links and their content

SVM (linear,
polynomial, RBF
kernels)

Web pages (quantity
used unclear); over
95% accuracy

Fu et al.
2006

Spoof Web page snapshot Earth Mover’s
Distance algorithm

10,272 legit and
9 fake pages;

Liu et al.
2006

Spoof Body text, layout, and
images

Visual similarity
assessment
algorithm

328 Web pages
(320 legit, 8 spoof);

Ntoulas
et al. 2006

Web Spam Body text lexical measures
and n-grams, anchor text

C4.5, Neural
Network, SVM

Over 17,000 Web
pages; 95.4%
accuracy

Shen et al.
2006

Web Spam Temporal link features
such as in link
growth/death rate

SVM (linear
kernel)

113,756 Web pages;

Urvoy
et al. 2006

Web Spam HTML style markers Jaccard based
similarity
algorithm (called
HSS)

5 million Web pages;

Wu and
Davison
2006

Web Spam Body text tokens, HTML
tags, in/out links,
relative/absolute links

SVM (linear
kernel)

1,285 Web pages; 93%
precision, 85% recall

Urvoy
et al. 2008

Web Spam HTML style markers Jaccard based
similarity
algorithm (called
HSS)

5,400 legit and spam
hosts; f-measure
between 55%-60%

Abbasi
and Chen
2009b

Concocted Body, HTML, and URL
text; images, number of
in/out links

C4.5, Naı̈ve Bayes,
SVM (linear
kernel), Winnow

350 legit and fake
Web sites; 96.7%
accuracy

Martinez-
Romo and
Araujo
2009

Web Spam Body text tokens, URL and
anchor text tokens, and
language models

Kullback-Leibler
divergence

3083 legit and spam
hosts; 81% f-measure

Abbasi
et al. 2010

Concocted,
Spoof

Body text lexical measures
and n-grams, HTML and
URL and anchor text
n-grams, image pixels,
number of in/out links

Bayesian Network,
C4.5, Logit
Regression, Naı̈ve
Bayes, Neural
Network, SVM
(linear composite,
linear, polynomial,
RBF kernels),

900 legit, concocted,
and spoof e-commerce
Web sites; 92.56%
accuracy

Le et al.
2011

Spoof URL tokens and lexical
and syntactic measures,
domain registration
information

SVM (linear
kernel), online
learning
algorithms

14,238 legit and spoof
URLs; 96.86%
accuracy

learning algorithms [Abbasi and Chen 2009b; Drost and Scheffer 2005]. Table II
presents a summary of select studies that used content-based methods for detection
of Web spam, spoof, and concocted Web sites. While the table is not an exhaustive
list of prior content-based studies, it provides important insights into the feature
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representations and classification methods utilized. For instance, prior studies have
often employed n-grams derived from the Web pages’ body text, URLs, and source code
as the feature representations [Abbasi and Chen 2009b; Chou et al. 2004; Drost and
Scheffer 2005; Le et al. 2011; Ntoulas et al. 2006; Wu et al. 2006].

Based on Table II, it is apparent that various machine learning techniques have
been used in previous fake Web site classification research, including Support Vector
Machines (SVM), Neural Networks, Bayesian Networks, Naı̈ve Bayes, C4.5, and Lo-
gistic Regression. SVM has been particularly effective in numerous prior Web spam
categorization studies. Drost and Scheffer [2005] attained over 95% accuracy using
linear and radial basis function (RBF) kernel SVMs to differentiate ham pages from
spam. Shen et al. [2006] trained a linear SVM using temporal features for Web spam
categorization. SVM has also worked well on detection of concocted escrow Web sites
[Abbasi and Chen 2009b]. Moreover, it has attained good results on related work per-
taining to detection of blog spam (i.e., splogs) [Kolari et al. 2006]. For instance, Lin
et al. [2007] achieved over 95% accuracy for Weblog and splog categorization using
body, URL, and anchor text coupled with temporal features and an RBF SVM kernel.
SVM has also been used for predicting the reliability of medical pages [Sondhi et al.
2012].

Other relevant classification algorithms include the C4.5 decision tree [Abbasi and
Chen 2009b; Ntoulas et al. 2006]. C4.5 uses the information gain heuristic to select
attributes which provide the highest entropy reduction on the training data [Quinlan
1986]. These features are used to build a decision tree model. Based on Bayes’
Theorem [Bayes 1958], Bayesian Networks and Naı̈ve Bayes have both been used
for fake Web site detection. Naı̈ve Bayes is a fairly simple probabilistic classification
algorithm that uses strong independence assumptions regarding various features.
Since these assumptions enable it to efficiently build models, it has been utilized for
Web spam, concocted, and spoof Web site detection [Abbasi et al. 2010; Salvetti and
Nicolov 2006]. Neural Networks and Logistic Regression have also been applied to
Web spam, concocted, and spoof Web sites [Abbasi et al. 2010; Ntoulas et al. 2006].
In recent comparisons on concocted and spoof Web sites, Bayesian Network, Logistic
Regression, and C4.5 all performed well [Abbasi et al. 2010]. Other studies have used
body text, URL, HTML, and image features with similarity measures such as Jaccard,
Kullback-Leibler, and Earth Mover’s Distance for spoof and Web spam detection [Liu
et al. 2006; Martinez-Romo and Araujo 2009; Urvoy et al. 2006, 2008].

3.2. Graph-Based Methods

Fake medical Web site developers routinely spend millions of dollars on black-hat
search engine optimization in order to make their Web sites more visible [Greenberg
2008]. This is commonly accomplished through the use of link farms; numerous Web
sites pointing to a set of designated sites, in order to artificially inflate their perceived
importance [Gyongyi and Garcia-Molina 2005; Wang et al. 2008; Wu and Davison
2005]. Graph-based techniques designed to combat link farms rely on the assump-
tion that good pages link to good pages, while bad pages are likely to link to other bad
ones. This notion of using linkage information to assess the quality of a Web page is
embodied by the Page Rank algorithm [Page et al. 1998]. Consequently, most graph-
based fake Web site detection algorithms follow the Page-Rank intuition by iteratively
traversing links in the Web graph while constantly updating each node’s score. Dur-
ing the traversal process, these methods also propagate trust and/or distrust from a
set of seed URLs that are known to be good or bad. Several graph-based techniques
have been proposed for detecting fake Web sites. Tables III and IV present a summary
of the methods incorporated in this study. They can be categorized according to their
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Table III. Single-Class Propagation Methods Employed in this Study

Algorithm Seed Pages Propagation

TrustRank
[Gyongyi et al.
2004]

E(A) = 1,
for known good pages
E(A) = 0,
for all other pages

TR(A) = E(A)(1−d)
n + d

n∑
i=1

TR(Ii)
C(Ii)

where:
E(A) is the initial TrustRank score of A
TR(Ii) is the TrustRank score of Ii, an inlink of A
C(Ii) is the is the number of outlinks for Ii
d is a tunable parameter between 0 and 1

BadRank
[Wu and
Davison 2005]

E(A) = 1,
for known bad pages
E(A) = 0,
for all other pages

BR(A) = E(A)(1 − d) + d
n∑

i=1

BR(Ti)
C(Ti)

where:
E(A) is the initial BadRank score of A
BR(Ti) is the BadRank score of Ti, an inlink of A
C(Ti) is the is the number of inlinks for Ti
d is a tunable parameter between 0 and 1

Parent
Penalty
[Wu and
Davison 2005]

S(A) = 1,
if number of common sites in
A’s inlinks and outlinks
exceeds a threshold t
S(A) = 0,
for all other pages

S(A) = 1, if
n∑

i=1
S(Ti) ≥ p

S(A) = 0, otherwise
where:
S(Ti) is the score of Ti, an outlink of A,
p is a parameter

Anti
TrustRank
[Krishnan
and Raj
2006]

E(A) = 1,
for known bad pages
E(A) = 0,
for all other pages

AR(A) = E(A)(1−d)
n + d

n∑
i=1

AR(Ii)
C(Ii)

where:
E(A) is the initial AntiTrustRank score of A
AR(Ii) is the AntiTrustRank score of Ii, an inlink of A
C(Ii) is the number of outlinks for Ii
d is between 0 and 1

Mass
Estimation
[Gyongyi
et al. 2006]

Uses known good pages
to compute TR(A), the
TrustRank score of A

SM(A) = PR(A)−TR(A)
PR(A)

where:
SM(A) is the spam mass of A, PR(A) is the PageRank

Cautious
Surfer
[Nie et al.
2007b]

Uses known good pages
to compute TR(A), the
TrustRank score of A

T(A) = 1 − rank
(

TR(A)
n

)

CS(A) =
k∑

i=1

CS(Ii)T(Ii)
p∑

j=1
T(Oj)

+
n∑

m=1

1−CS(1m)T(1m)
T(1m)

where:
CS(Ii) is the cautious surfer score of Ii, an inlink of A
Oj is one of the p outlinks of Ii, 1m is one of the n
nodes

propagation mechanisms, which are based on the assumptions they make regarding
how real and fake Web pages are connected to one another.

Single class propagation algorithms begin with a seed set of known good or bad
pages (Table III). These pages’ “goodness” or “badness” is then propagated through
the graph via their inlinks and/or outlinks. Examples of single class propagation al-
gorithms include BadRank, TrustRank, AntiTrustRank, Mass Estimation, and Par-
entPenalty [Gyongyi and Garcia-Molina 2005; Gyongyi et al. 2004; Krishnan and Raj
2006; Wu and Davison 2005]. BadRank, AntiTrustRank, and ParentPenalty all prop-
agate distrust through known bad pages [Krishnan and Raj 2006; Wu and Davison
2005]. In contrast, TrustRank, Mass Estimation, and Cautious Surfer all relay trust
through good pages [Gyongyi and Garcia-Molina 2005; Gyongyi et al. 2004; Nie et al.
2007b].
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Table IV. Unsupervised and Dual-Class Propagation Methods Employed in This Study

Algorithm Seed Pages Propagation

PageRank
[Page et al.
1998]

Not applicable PR(A) = (1−d)
n + d

n∑
i=1

PR(Ii)
C(Ii)

where:
PR(Ii) is the PageRank score of Ii, an inlink of A
C(Ii) is the number of outlinks for Ii
d is a tunable parameter between 0 and 1

QoL
[Zhang et al.
2006]

EL(A) = 1,
if A’s good outlinks >

bad outlinks,
and bad outlinks > k
EL(A) = −1,
for all other pages

QoL(A)=EL(A)(1−d) + d
( n∑

i=1

(
β

QoC(Ti)
C(Ti)

+ (1 − β) QoL(Ti)
C(Ti)

))

where:
EL(A) is the initial score of A
QoC(Ti) is the QoC score of Ti, an outlink of A
QoL(Ti) is the QoL score of Ti
C(Ti) is the number of inlinks of Ti
β and d are tunable parameters between 0 and 1

QoC
[Zhang et al.
2006]

EC(A) = 1,
for known good pages
EC(A) = 0,
for all other pages

QoC(A)=EC(A)(1−d) + d
( n∑

i=1

(
α

QoC(Ii)
C(Ii)

+ (1 − α) QoL(Ii)
C(Ii)

))

where:
EC(A) is the initial score of A
QoC(Ii) is the QoC score of Ii, an outlink of A
QoL(Ii) is the QoL score of Ii
C(Ii) is the number of inlinks of Ii
α and d are tunable parameters between 0 and 1

Trust
Distrust
[Nie et al.
2007a;
Wu et al.
2006]

EC(A) = 1,
for known good pages
F(A) = 1,
for known bad pages
E(A), F(A) = 0,
for all other pages

TD(A)= αT(A) − βD(A)
where:

T(A) = E(A)(1−d)
n + d

n∑
i=1

T(Id)
log(1+C(Ii))

D(A) = F(A)(1−d)
n + d

n∑
i=1

D(Oi)
log(1+G(Oi))

E(A) and F(A) are the initial trust/distrust scores of A
T(Ii) is the trust score of Ii, an inlink of A
D(Oi) is the distrust score of Oi, an outlink of A
C(Ii) is the number of outlinks for Ii
G(Oi) is the number of inlinks for Oi
α, β and d are tunable parameters between 0 and 1

Dual class propagation algorithms, such as QoC, QoL, and TrustDistrust all utilize
good and bad seed pages and also propagate scores through both inlinks and outlinks
[Nie et al. 2007b; Zhang et al. 2006]. A third class of algorithms (e.g., PageRank) do not
use any seed pages; they are purely unsupervised techniques that were not designed
to detect bad pages [Page et al. 1998]. Nevertheless, PageRank is effective at detecting
fake Web pages that do not utilize link farms, and is therefore often used as a base-
line [Zhang et al. 2006]. For completeness, the PageRank formulation is included in
Table IV prior to the dual-class algorithms.

3.3. Fusion Strategies for Combining Content and Graph Information

Combining content and structural information has yielded good results for various
Web mining tasks [Adomavicius and Tuzhilin 2005; Fang et al. 2007]. It can also im-
prove fake Web site detection performance, as shown in prior studies [Abernathy et al.
2008; Araujo and Martinez-Romo 2010]. One commonly used approach is to combine
content and link-based features into a single feature vector, which is then input into
a classifier [Wu et al. 2006]. A caveat is that representing linkage information in fea-
ture vector form can inhibit the representational richness of the link-based informa-
tion captured. Nevertheless, combining content and link features in such a manner
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has resulted in improved fake Web site detection capabilities as compared to using
either category of information in isolation [Drost and Scheffer 2005]. For example,
certain fake online escrow Web sites (a major category of concocted sites) are easier to
detect using content-based features, while others are more susceptible to link-based
attributes [Abbasi and Chen 2009b].

Metalearning uses the expertise acquired through underlying machine learning or
data mining processes to increase the quality of results obtained in subsequent ap-
plications [Brazdil et al. 2008]. Various meta-learning strategies have been utilized
for fake Web site detection. Stack and ensemble classifiers have improved results
of underlying content-based classifiers, both for concocted and spoof site detection
[Abbasi and Chen 2009a, 2009b]. Stack classifiers have also improved performance
when used with features derived from underlying graph-based algorithms such as
PageRank and TrustRank [Becchetti et al. 2008]. Castillo et al. [2007] used an ensem-
ble of classifiers, each trained with content and link-based features, to improve Web
spam detection performance over results attained using a single C4.5 decision tree.

3.4. Using Adaptive Learning to Overcome Data Limitations

Recently, adaptive learning has shown promising results. Reclassifying/relabeling
test data instances as new information becomes available (i.e., using other instances’
predictions as features) has worked well on Web spam graphs [Gan and Suel 2007].
Similarly, Tian et al. [2007] used semi-supervised learning to generate new link fea-
tures, which were then added to the original feature set and used to reclassify the
testing data. Castillo et al. [2007] used a stacked graphical learning method that im-
proved performance for an underlying classifier when run for two iterations. Due to
the difficulties associated with manually identifying and gathering fake Web sites,
such adaptive learning approaches are particularly important since the quantity of
known good/bad pages is often limited relative to the overall size of the test bed. Given
the size of the Web, in many instances, the potential training data constitutes less
than 1% of the nodes in the graph [Wu and Chellapilla 2007]. The situation is further
exacerbated by the difficulty associated with finding and collecting known fake Web
sites that are still alive: many are taken down within a few days after appearing in
online fraud prevention communities’ databases [Abbasi and Chen 2009a; Zhang et al.
2006]. Therefore, relabeling nodes and retraining models as new information becomes
available during the learning process could be highly beneficial [Le et al. 2011].

4. RECURSIVE TRUST LABELING

Leveraging the insights gained from prior studies, we propose an adaptive learn-
ing algorithm called Recursive Trust Labeling (RTL), which uses underlying graph
and content-based classifiers that exploit the unique characteristics of fake medical
Web sites. The recursive labeling mechanism recursively expands the training dataset
by selecting additional test instances during each iteration. Instances that have the
strongest prediction scores (based on the content and graph classifiers) are selected
and added with class labels that are based on the underlying classifiers’ predictions.
The RTL algorithm is designed to exploit the complementary information utilized by
content and graph-based classifiers in a dynamic manner; classifications are revised
and improved as new information becomes available.

When using semisupervised learning, a critical problem arises when misclassified
instances are added to the training data [Tian et al. 2007]. This is a major concern
since classification models can incorporate incorrect rules and assumptions, result-
ing in amplified error rates [Gan and Suel 2007]. To avoid this issue, prior adaptive
methods have limited their use of semi-supervised learning to generating one or a
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Fig. 2. Recursive trust labeling (RTL) algorithm overview.

few new features [Gan and Suel 2007; Tian et al. 2007]. Consequently, their adaptive
learning components only provided marginal improvements over one or two iterations
[Castillo et al. 2007]. RTL addresses this issue in two ways. Test instances that have
the strongest prediction agreement across the two powerful underlying content and
graph-based classifiers are added to the training data. Moreover, during each itera-
tion, the training dataset is reset and all testing instances are reclassified in order to
allow error correction. As later demonstrated in the evaluation section, these differ-
ences allow RTL to significantly improve performance across several iterations.

Figure 2 shows an overview of the RTL algorithm. A high-level description of RTL’s
steps is as follows: first, the underlying content and graph-based classifiers are trained
and run on the entire test bed. The training set T is then reset to only include the
original training instances. The predictions from these classifiers are ranked and these
rankings are used to compute an overall weight for each test instance in the starting
set S. If the stopping rule has not been satisfied, the d test instances with the highest
rank are added to the training data (with class labels congruent with the underlying
content and graph classifiers’ predictions), and d is incremented. If d is less than the
number of instances in the test bed (i.e., m), we repeat all the steps using the expanded
training data. Once m items have been added, the algorithm outputs the final test
predictions. The details regarding RTL’s three main components are discussed below.

4.1. Content Classifier (RTL-CC)

Prior research has noted that site level measures of content-based features occurring
across a Web site’s pages can be too aggregated, resulting in diminished classification
performance [Abbasi and Chen 2009b]. However, since Web sites can contain thou-
sands of pages, incorporating all the content can be computationally inefficient and
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Fig. 3. Illustration of RTL’s content classifier.

unnecessary [Ester et al. 2002; Kriegel and Schubert 2004]. Therefore, RTL’s content
classifier aggregates page-level classification scores from a subset of the Web sites’
pages, to derive accurate overall classifications for various Web sites in a computation-
ally efficient manner.

An illustration of the content classifier is presented in Figure 3. For each Web site,
the content classifier selects the top x pages. The content feature set utilized is com-
posed of fraud cues derived from the Web pages’ body text, source code, and URLs and
anchor text. All of these feature categories have been shown to be effective in prior re-
search [Abbasi and Chen 2009b; Drost and Scheffer 2005; Fetterly et al. 2004; Gyongyi
et al. 2004; Salvetti and Nicolov 2006]. The body text features used are word n-grams
[Drost and Scheffer 2005; Wu and Davison 2006]. Source code n-grams are used for
representing page design style [Urvoy et al. 2008; Wu and Davison 2005]. These are
extracted from the HTML, JSP, ASP, etc. portions of the page. The URL features
include character and token level n-grams extracted from the URLs as well as their
anchor text [Araujo and Martinez-Romo 2010; Lin et al. 2007; Salvetti and Nicolov
2006]. For all n-gram feature categories, we use unigrams, bigrams, and trigrams.

Fake medical Web sites often provide inaccurate and/or misleading information
[Aphinyanaphongs and Aliferis 2007; Sondhi et al. 2012]. For instance, a fake online
pharmacy may intentionally fail to mention the side effects associated with a particu-
lar drug in order to bolster sales. Medical terms, including drug names, health condi-
tions, symptoms, adverse reactions, drug-drug interactions etc., often have numerous
synonymous or semantically parallel terms and phrases [Liu et al. 2002]. Hence, med-
ical fraud cues may be manifested in many syntactically different (yet semantically
equivalent) forms. For instance, clinical drugs have a standardized nomenclature; the
psychotropic drug Ciprofloxacin is sold under the brand names Cipro and Proquin.
Ciprofloxacin is also known to cause tendonitis or tendon rupture in some patients.
Learning fraud cue patterns such as the cooccurrence of “Cipro” + “no side effects”
and “Proquin” + “no side effects” would be redundant. Similarly, including patterns
based on the cooccurrence of “Cipro” + “tendonitis” and “Cipro” + “tendon inflamma-
tion” would also be redundant. This redundancy is problematic since only a finite num-
ber of fraud cues can be employed, for computational reasons, to decrease run times,
and to avoid over-fitting [Abbasi and Chen 2009b]. Accordingly, we aggregate synony-
mous concept words using a medical thesaurus, and list of drug names, to remove re-
dundancy and improve fraud cue quality (we used the Unified Medical Language Sys-
tem’s MetaThesaurus). For example, all instances of Ciprofloxacin, Cipro, or Proquin
in the text are represented using Ciprofloxacin|Cipro|Proquin, while tendonitis and

ACM Transactions on Information Systems, Vol. 30, No. 4, Article 22, Publication date: November 2012.



22:12 A. Abbasi et al.

Fig. 4. RTL’s content classifier’s fraud cue extractor.

tendon inflammation would be tendonitis|tendon inflammation after aggregation. Af-
ter feature aggregation, all features occurring at least 3 times in the training data are
retained.

The formulation for the fraud cue extraction phase is presented in Figure 4. In order
to filter out features with lesser discriminatory potential, each feature u is weighted
using the information gain heuristic, based on its occurrence distribution across legit-
imate and fraudulent Web site pages in the training data. While univariate ranking
methods such as information gain are computationally effective, they are incapable of
removing redundant overlapping n-grams since they consider each feature in isolation
[Riloff et al. 2006]. We therefore include a second step in the fraud cue extraction phase
where only those higher-order n-grams (i.e., bigrams and trigrams) are retained that
have a weight greater than the lower-order n-grams that they are composed of. Once
all features have been weighted, a subset of the remaining features (with the highest
weights) is incorporated in the final fraud cue set.

The page-level data matrix (composed of the learned features’ columns and page
instance rows) is input into an SVM classifier that is trained using a linear kernel and
the SVM light package [Joachims 2002]. The SVM-generated page-level classification
scores on the testing data, which are negative for fake Web sites and positive for le-
gitimate ones, are then input into the site level classifier. Prior work on fake Web site
detection has observed that Web pages occurring deeper in the Web site can be more
discriminative, since legitimate and fraudulent Web sites’ contents often differ more at
deeper levels [Abbasi and Chen 2009b]. Accordingly, our site classifier assigns a weight
to each page’s score that is proportional to its level relative to the home page. A site’s
classification is based on the weighted sum of its page-level scores, and is presented in
Figure 5.

4.2. Graph Classifier (RTL-GC)

Most prior graph classifiers have used single-class propagation (i.e., trust or distrust)
along Web site inlinks. The intuition for the latter was based on PageRank principles;
fake Web sites can point to legitimate Web sites, but cannot force legitimate Web sites
to point to them [Page et al. 1998; Wu and Davison 2005]. However, in the case of fake
medical Web sites, this assumption does not always hold true. Given the hefty social
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Fig. 5. RTL’s content-based site classifier (RTL-CC).

Fig. 6. Illustration of online pharmacy Web site linkage.

costs exacted by fake online pharmacies, there are considerable online communities,
discussion forums, and trusted third parties that provide lists of known fake phar-
macy Web sites. Moreover, fake pharmacies often include links to other fake Web sites.
Figure 6 shows a small illustrative example. In the figure, blue nodes indicate legit-
imate pharmacies, red denote fraudulent ones, while white nodes indicate other Web
sites. The trusted third-party Web site Pharmacy Checker points to numerous legit-
imate and fraudulent online pharmacies (a few examples are depicted in Figure 6).
Moreover, a few of these fake pharmacies point to other legitimate and fake pharma-
cies. Consequently using TrustRank, a single class inlink-based algorithm, the fake
site www.canadianpharmacymeds.com has a considerably higher trust score than the
legitimate pharmacy www.drugstore.com (scores are shown next to URLs). While prior
dual-class propagation methods quell this concern to a large extent [Wu et al. 2006;
Zhang et al. 2006], they typically propagate each class exclusively along inlinks or
outlinks (trust based on inlinks and distrust based on outlinks).

We employ a graph classifier that incorporates the aforementioned insights related
to fake medical Web sites. Our graph classifier uses dual class propagation simulta-
neously based on both inlinks and outlinks. Let S(A) denote the initial score of page
A, which is “−1” for all known fake pharmacy Web sites, “1” for legitimate ones, and
“0” for all other nodes. The overall score GC(A) for a page A is the weighted sum of
its propagation score and its initial score, where the propagation score is the weighted
normalized sum across A ’s y inlinks and z outlinks. RTL’s graph classifier’s mathe-
matical formulation is presented in Figure 7. It is important to note that while RTL’s
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Fig. 7. RTL’s graph classifier (RTL-GC).

graph classifier embodies many of the same intuitions as the QoC, QoL, and Trust
Distrust algorithms [Nie et al. 2007b; Wu et al. 2006; Zhang et al. 2006], it uses a
different propagation mechanism. RTL’s graph classifier simultaneously propagates
trust and distrust based on inlinks and outlinks (see Table IV for formulations of the
QoC, QoL, and Trust Distrust algorithms). These differences result in improved fake
medical Web site detection performance, as later described in Sections 6.1 and 6.2.

4.3. Recursive Labeling Mechanism

Most prior graph classifiers have used single-class propagation (i.e., trust or distrust)
along The mathematical formulation for the recursive labeling mechanism is shown in
Figure 8. In each iteration, the content and graph classifiers are run with the training
data T and class labels Y . Next, the training dataset T is reset to the original n in-
stances (this is done to allow mislabeled instances to be corrected in future iterations).
The predictions for each classifier on the test instances S (i.e., CC(S) and GC(S)) are
ranked based on their magnitude (i.e., absolute values) in descending order, in R CC
and R GC. Raw predictions can be positive or negative (where values greater than
zero signify that the instance was classified as legitimate). If CC(i) and GC(i) have the
same class label, the overall score W Si for an instance i is the sum of its two under-
lying classifiers’ ranks, W CCi and W GCi (where lower scores are better). Otherwise,
the score is set to 2m, where m is the number of testing instances. From W S, the top
d instances are selected (i.e., ones with lowest score) and added to V. The class label
Z Vi for a selected instance Vi is assigned based on the polarity and magnitude of the
predictions made by CC(Vi) and GC(Vi). Since CC(Vi) and GC(Vi) are not discrete, in
situations where the two classifiers make opposing predictions, the prediction with the
greater magnitude is used to determine the class label. Finally, V and Z are added to
T and Y , respectively. This extended training dataset is used to train the content and
graph classifiers in the next iteration. However, since T is reset after its use during
each iteration, the T ∪V from iteration 1 would not necessarily be a subset of the T ∪V
from iteration 2. The variable d is incremented by a constant p (i.e., d = d + p) such
that the number of test instances added to the training data increases by p in subse-
quent iterations. The process is repeated until all testing instances have been labeled
(i.e., d > m).

5. RESEARCH DESIGN AND EVALUATION TEST BED

Given the gravity of the fake medical Web site problem and specific characteristics
exhibited by such Web sites, pertaining to their content and linkage (as mentioned in
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Fig. 8. Formulation of recursive labeling mechanism in RTL algorithm.

Sections 2 and 4), we conducted experiments to assess the efficacy of RTL’s various
components. The experiments were designed to answer specific research questions

— Comparing RTL-CC and RTL-GC against existing content and graph-based meth-
ods. There has been limited prior work pertaining to the detection of fake medical
Web sites. How effective are existing content and graph-based methods for detect-
ing fake medical Web sites? The proposed RTL-GC is intended to account for link-
age tendencies exhibited by medical Web sites. Can such a graph-based method
that employs simultaneous dual-class propagation along in and out links improve
performance over existing methods? Given the complexities associated with med-
ical content, RTL-CC incorporates several novel components (including a medical
thesaurus). Can RTL-CC outperform existing state-of-the-art content-based meth-
ods? Given the challenges associated with identifying fraudulent medical content
[Aphinyanaphongs and Aliferis 2007], there is often fairly limited amounts of avail-
able training data. How effective are RTL-CC and RTL-GC, relative to existing con-
tent and graph-based methods, when using limited training data?

— Comparing RTL against existing meta-learning and adaptive methods. RTL uses
a novel recursive labeling mechanism designed to iteratively add new instances
to the training set based on the predictions derived from RTL-CC and RTL-GC.
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Table V. Description of Research Test Bed

Domain Quantity Sources
Online Pharmacies 166 legit

325 fake
National Association of Boards of Pharmacy
(http://www.nabp.net)
LegitScript (http://www.legitscript.com)

Medical Institutions 122 legit
22 fake

Hospital Link (http://www.hospitallink.com)
Artists Against 4-1-9 (http://wiki.aa419.org/index.php)

Healthcare Information 187 legit
178 fake

Medical Library Association (http://caphis.mlanet.org)
Health on the Net (http://www.healthonnet.org)
National Council Against Health Fraud
(http://www.ncahf.org)

Meta-learning methods such as stacking and adaptive learning strategies have pro-
vided state-of-the-art results in prior studies. How effective is RTL in comparison
with existing meta-learning methods or adaptive techniques (which typically use
semi-supervised learning to iteratively generate new features)? Moreover, consid-
ering that RTL’s recursive labeling mechanism is designed to effectively leverage
unlabeled instances: How robust is RTL when using limited quantities of balanced
and imbalanced training data?

— Assessing the impact of medical Web site categories on the performance of RTL and
state-of-the-art methods. The various categories of fake medical Web sites each have
different objectives and characteristics. How effective are RTL and state-of-the-art
comparison methods for detection of fake pharmacy, medical institution, and health
information Web sites?

In the remainder of Section 5, we describe the experimental test bed, encompass-
ing hundreds of known legitimate and fake medical Web sites. Section 6 includes a
detailed evaluation of RTL-CC, RTL-GC, and RTL as a whole, in comparison with nu-
merous content, graph, metalearning, and adaptive methods.

5.1. Test Bed

The test bed comprised 1,000 legitimate and fake medical Web sites (described in
Table V). We collected 166 legitimate and 325 fraudulent online pharmacy Web sites.
The URLs for these Web sites were obtained from reputable sources including the
National Association of Boards of Pharmacy and LegitScript, both of which follow rig-
orous, well-documented standards for evaluating online pharmacies. The number of
fraudulent instances was nearly double since fake pharmacies exceed legitimate ones
[Easton 2007; Greenberg 2008]. Our own analysis of Google search query results for
“online pharmacy” in October 2009 and December 2012 revealed that 61 and 58 of the
top 100 search results were fraudulent, respectively. We also collected 122 legitimate
and 22 fake medical institution Web sites, primarily composed of legitimate and fake
hospitals. The legitimate URLs were taken from Hospital Link, an online portal that
contains a list of trusted hospitals. The fake hospitals’ URLs were identified through
the Artists Against 4-1-9 (an online fraud prevention community), as well as various
news articles appearing in online outlets such as CNN and BBC. Due to the lack of on-
line databases specifically for fake hospital Web sites, and the fact that they are often
taken down very quickly, the number collected was relatively smaller. Furthermore,
we collected 187 legitimate and 178 fraudulent health information Web sites. The le-
gitimate URLs were those taken from the Medical Library Association’s consumer and
patient health information section (CAPHIS), as well as ones certified by the Health on
the Net Foundation [Gaudinat et al. 2007; Wang and Richard 2007]. The fraudulent
health information Web sites were taken from the National Council Against Health
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Fig. 9. Subset of the site-level test bed graph.

Fraud’s (NCAHF) Web site and discussion list. The NCAHF discussion list includes
several physicians and medical researchers that post URLs for questionable health
information Web sites (e.g., ones claiming that autism is a curable virus). Members of
the list discuss the merits of the claims made in each of the Web sites. We included
only Web sites where there was an overwhelming consensus amongst the discussants.
The NCAHF has also been used as a resource in previous research [Aphinyanaphongs
and Aliferis 2007].

All pages within each Web site were collected leading to an initial collection of ap-
proximately 2.7 million pages. Surprisingly, the fake medical Web sites were much
larger than the legitimate ones, with nearly twice as many pages. The entire hyper-
link graph for these 1,000 seed URLs was collected using link expansion. This involved
iteratively collecting all inlinks and outlinks of queue pages, adding the newly collected
pages to the queue, and repeating the process. The graph encompassed nearly 18 mil-
lion pages from approximately 930,000 Web sites/domains, with close to 100 million
links. Figure 9 shows a small subset of the site level graph. Depicted are the 1,000
known nodes as well as additional nodes with a degree greater than 1,000. Legitimate
medical Web sites are blue while known fakes are red and other nodes are colored
white. The graph layout was determined using a spring-embedded algorithm. Visu-
ally, it appears that the application of graph-based methods may be feasible as both
legitimate and fraudulent sites appear to be situated in close proximity to others be-
longing to the same class.

6. EVALUATION

A bootstrapping approach was employed for all experiments, where the 1,000 Web
sites were randomly split into 150 training and 850 test cases, for 30 independent
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runs. In each of the 30 bootstrap runs, the training data was composed of 75 legiti-
mate and 75 fraudulent instances, while the testing data contained 400 legitimate and
450 fraudulent instances. All analysis was performed at the site level, as done in many
prior studies [Gyongyi et al. 2006; Wu and Chellapilla 2007]. Our preliminary anal-
ysis revealed that the graph-based methods performed better on site-level graphs as
compared to page-level ones. Hence, for each bootstrap run, the algorithms were only
evaluated on the 850 test sites (though the graph-based methods were run on the en-
tire 930,000 node graph). The evaluation metrics employed included overall accuracy
and class-level precision, recall, and f-measure [Wu and Davison 2005]. Three differ-
ent sets of experiments were run. In the first set, RTL’s content and graph classifiers
(i.e., RTL-CC and RTL-GC) were compared against various content and graph-based
methods for fake Web site detection. In the second, RTL was evaluated in compari-
son with several stack classifiers. Experiment three compared RTL against existing
adaptive methods.

6.1. Results for RTL-CC and RTL-GC in Comparison with Content and Graph-Based Methods

We compared RTL-CC and RTL-GC against 9 content and 10 graph-based methods.
Each of the 19 comparison algorithm’s parameters were tuned extensively; the set-
tings yielding the best results were utilized. The graph-based algorithms utilized
were the ones described in Tables III and IV: PageRank, TrustRank, AntiTrustRank,
BadRank, Mass Estimation, Parent Penalty, QoC, QoL, TrustDistrust, and Cautious
Surfer. In the case of the graph-based methods, an additional classification thresh-
old parameter s was also used. Sites were classified as legitimate/fake depending on
their position with respect to the threshold, which was tuned for each graph-based
algorithm.

BadRank was run using d = 0.5 and s = 0.001, while d = 0.1 and s = 0.000001 were
used for AntiTrustRank. For ParentPenalty, t = 3 and p = 4. TrustRank was run using
d = 0.5 and s = 0.000001 while these same parameters were set to 0.1 and 0.999999 for
Mass Estimation, respectively. Cautious Surfer was run using s = 0.03. QoC and QoL
were run with α = 0.5, β = 0.5, d = 0.85, and s = 0 while these same parameters were
set to 0.5, 0.7, 0.1, and 0.0000005 for TrustDistrust, respectively. For PageRank, d was
set to 0.05, and 0.0000001 was used for s.

As noted in Section 3.1, prior content-based detection studies commonly utilized ma-
chine learning classifiers in conjunction with n-gram features derived from body text,
URL and anchor text, and source code. Accordingly, the comparison content-based
classifiers employed were ones utilized in prior studies: linear kernel SVM, polyno-
mial kernel SVM, RBF kernel SVM, Bayesian Network, Naı̈ve Bayes, Neural Net-
work, C4.5 Decision Tree, and Logistic Regression [Abbasi and Chen 2009a, 2009b;
Drost and Scheffer 2005; Kolari et al. 2006; Ntoulas et al. 2006]. Each classifier was
run using body text, URL and anchor text, and HTML n-grams. Since the number
of content features employed in prior studies has varied considerably, each classifier
was run using the top 2,500 to 15,000 features (ranked based on their information
gain weights) in 2,500 feature increments. For each of the 8 classifiers, we used the
feature quantity which yielded the best performance results on the testing data. The
Neural network was run using 2,500 features. The Bayesian Network was run using
5,000 features. C4.5, Logistic Regression, and Naı̈ve Bayes were all run using 7,500
features. SVM-RBF was run using 7,500 features with gamma = 0.001. SVM-Poly
was run using 10,000 features with d = 2.0. SVM-linear was run using 12,500 fea-
tures. All of the aforementioned content-based classifiers were run using either Weka
or SVMLight [Joachims 2002; Witten and Frank 2005]. We also included AZProtect as
a benchmark content-based detection method since it had performed well in previous
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Table VI. Results for RTL-GC and RTL-CC in Comparison with Content and Graph Methods

Algorithm Overall Legit Fake
Accuracy F-meas. Prec. Recall F-meas. Prec. Recall

G
ra

p
h

RTL-GC 89.24 87.84 93.78 82.60 90.35 86.02 95.13
QoC 86.39 84.50 91.02 78.85 87.86 83.19 92.38
Mass Estim. 83.22 80.77 87.64 74.91 85.11 80.25 90.61
QoL 82.73 80.70 85.14 76.70 84.38 80.96 88.10
TrustDistrust 82.37 79.01 89.84 70.51 84.80 78.00 92.91
TrustRank 78.92 76.55 80.34 73.10 80.86 77.86 84.10
AntiTrustRank 70.58 66.52 71.61 62.10 73.76 69.87 78.11
BadRank 66.62 69.68 60.85 81.49 62.88 76.45 53.40
Cautious Surf 63.55 58.10 63.28 53.70 67.74 63.73 72.30
PageRank 58.70 68.60 53.41 95.87 39.67 87.48 25.65
ParentPenalty 51.98 49.79 49.02 50.58 54.00 54.79 53.23

C
on

te
n

t

RTL-CC 91.02 90.05 94.14 86.30 91.82 88.66 95.22
AZProtect 88.56 87.26 91.73 83.20 89.63 86.21 93.33
SVM-Linear 86.62 84.99 90.00 80.50 87.93 84.16 91.89
Logistic Reg. 83.84 82.21 85.29 79.34 85.20 82.71 87.84
SVM-RBF 82.40 80.15 85.38 75.53 84.18 80.27 88.50
SVM-Poly 80.80 78.76 82.13 75.66 82.48 79.78 85.37
Bayes Net 79.77 78.14 79.50 76.82 81.17 79.99 82.39
Neural Net 79.44 77.08 81.08 73.46 81.36 78.23 84.76
C4.5 78.75 76.60 79.48 73.92 80.53 78.18 83.04
Naı̈ve Bayes 78.56 74.08 85.96 65.08 81.73 74.47 90.55

studies [Abbasi and Chen 2009a, 2010]. AZProtect was run using a rich feature set
composed of nearly 6,000 attributes derived from the Web sites’ body text, source
code, URL tokens, images, and linkage-based information [Abbasi and Chen 2009a].
These features were learned from the training Web sites (in each bootstrap fold), us-
ing the information gain heuristic. RTL-GC and RTL-CC’s parameters were tuned
using 10 fold cross-validation on the training data. RTL-CC was run using 100 pages
per site (x = 100). RTL-GC was run using α = 0.5, β = 0.5, and s = 0.0001. In or-
der to allow a fair comparison against the content and graph methods, RTL-CC and
RTL-GC were run as stand-alone methods, without the use of the recursive labeling
mechanism.

Table VI shows the experimental results, averaged across the 30 bootstrap runs.
RTL-GC and RTL-CC outperformed all their respective comparison graph and content
classifiers across all seven evaluation metrics. With respect to the comparison tech-
niques, graph-based methods such as QoC and Mass Estimation and content-based
methods such as AZProtect and SVM-Linear had the best performance. As suspected,
PageRank performed poorly since it is highly susceptible to exploitation via link farms.
It is worth noting that three of the best comparison graph-based methods (i.e., QoC,
QoL, and TrustDistrust) were the only three that used dual class propagation (i.e.,
they propagated trust and distrust). Their improved performance is consistent with
prior research, which has alluded to the superiority of propagating trust and distrust
over simply using single class propagation [Wu et al. 2006]. However, as noted in
Section 4.2 (and illustrated in Figure 6), in the case of medical Web sites, simulta-
neously propagating trust and distrust along both in and out-links can yield better
results. This allowed RTL-GC to outperform existing dual class propagation meth-
ods. The enhanced performance of AZProtect over other comparison content-based
methods is in line with prior concocted Web site detection studies [Abbasi and Chen
2009b; Abbasi et al. 2010]. With respect to the comparison methods, the content-based
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techniques not only had the best overall results, they were also more consistent in
their performance (i.e., they had less variation).

Pairwise t-tests were conducted on the accuracy and class-level f-measure values
for the 30 bootstrap runs (n = 30). In the t-tests, RTL-CC was evaluated against the
9 comparison content classifiers, while RTL-GC was compared against the 10 graph
classifiers. RTL-GC and RTL-CC significantly outperformed their comparison meth-
ods (all p-values <0.001, n = 30), with overall accuracy values that were at least 2%
higher. The results suggest that RTL-GC and RTL-CC better leveraged and exploited
key characteristics of fake medical Web sites, enabling enhanced performance over
comparison methods.

6.2. Robustness Analysis of RTL-CC and RTL-GC in Comparison with Content and
Graph-Based Methods

Since often there is limited knowledge of known good or bad sites [Gyongyi et al.
2004; Wu and Chellapilla 2007], algorithms that are less dependent on larger train-
ing datasets are highly desirable. Accordingly, we assessed the robustness of RTL-CC,
RTL-GC, and the comparison algorithms. Here, robustness refers to the effectiveness
of the algorithms when run using less training data. Each algorithm was run using
10%−100% of the original training data (in 10% increments), for each of the 30 boot-
strap runs. In other words, each algorithm was run using between 15 and 150 training
instances, in 15 site increments. For each bootstrap run, all testing instances were
used, as done in the previous experiment (Section 5.1). Since PageRank is an unsuper-
vised method that does not rely on training data, changes to the training data did not
impact its results. It was therefore excluded from the analysis.

Figure 10 shows the experimental results across the 30 bootstrap runs. The fig-
ure depicts charts for RTL-GC and RTL-CC in comparison with the content and
graph-based methods. The charts include overall accuracy (top row) and class-level
f-measures, for different training set sizes. For each chart, the y-axis indicates the
algorithms’ accuracy or f-measure while the x-axis displays the percentage of the orig-
inal training data used. As shown in the figure, RTL-GC outperformed all compar-
ison graph methods, while RTL-CC outperformed the content-based methods for all
test bed sizes. RTL-GC and RTL-CC were both more effective than comparison meth-
ods when using less training data. In the case of RTL-GC, this was attributable to
the use of simultaneous dual class propagation along both in and out-links, which al-
lowed the more accurate propagation of trust and distrust with sparse training data.
In contrast, the best content and graph-based methods needed at least 40%–50% of
the training data (e.g., AZProtect, SVM-linear, Logit, QoC, Mass Estimation) while
some required even more (e.g., BadRank, AntiTrustRank), to attain results compa-
rable to those yielded using the entire training set. Case in point, QoC and AZPro-
tect’s accuracies were 6% and 10% lower when using only 20% of the training data,
respectively.

Table VII shows the area under the curve (AUC) values for RTL-GC and RTL-CC in
comparison with the content and graph-based algorithms. The AUC values are based
on the overall accuracy and class-level f-measure plots depicted in Figure 10, as well as
the legitimate and fake precision/recall plots. Based on the table, it is further evident
that RTL-GC and RTL-CC outperformed comparison classifiers in terms of AUC val-
ues associated with overall accuracy and class-level f-measures, precision, and recall.
These results support the notion that RTL’s underlying content and graph classifiers
can dramatically improve performance over existing methods: the RTL-GC and RTL-
CC AUC values for accuracy and f-measures were at least 30 to 55 points higher than
those associated with the best graph and content methods.
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Fig. 10. Robustness results for RTL-CC and RTL-GC in comparison with content and graph-based
methods.

6.3. Results for RTL in Comparison with Stack Classifiers

In the second set of experiments, RTL was compared against stacked classifiers. Stack-
ing is a popular metalearning strategy that has worked well in prior fake Web site
detection studies [Abbasi and Chen 2009b; Becchetti et al. 2008]. RTL was run
using both underlying classifiers (i.e., RTL-CC and RTl-GC) in conjunction with the
recursive labeling mechanism. The recursive labeling mechanism was run using p =
50 since this setting provided a good balance between run time and performance when
using 10-fold cross validation on the training data. Eight of the content-based classi-
fiers from the prior experiment were used as top-level classifiers in the stack. These
stack classifiers made predictions using the underlying content and graph-based
classifiers’ Web site predictions/scores as their input feature values. As a preprocess-
ing step, we sorted all 19 content and graph classifiers based on their performance
in the prior experiment and added them one at a time as features for the 8 stacks.
Hence, AZProtect was added first, followed by SVM-linear, QoC, Logistic regression,
Mass Estimation, QoL, etc. Given the poor performance of certain classifiers, this
approach was utilized in order to allow the stack classifiers to use the less noisy
underlying classifiers as features, thereby improving their performance. The results
from this preprocessing step are presented in Figure 11. Generally, using the top 2 or
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Table VII. AUC Values for RTL-GC and RTL-CC and Comparison Methods

Algorithm Overall Legit Fake
Accuracy F-meas. Prec. Recall F-meas. Prec. Recall

G
ra

p
h

RTL-GC 784.10 767.03 831.19 712.40 797.25 752.52 847.83
QoC 741.37 710.78 805.45 637.40 763.26 704.26 833.42
Mass Estim. 722.53 676.29 818.04 584.97 751.84 679.64 844.81
TrustDistrust 713.44 675.37 778.96 596.17 740.46 676.60 817.68
QoL 710.60 676.68 755.83 614.29 735.29 683.77 796.21
TrustRank 706.31 679.70 730.86 635.75 727.09 689.74 769.03
AntiTrustRank 585.80 542.57 584.03 506.61 619.70 587.06 656.19
Cautious Surf 538.28 491.88 525.08 462.79 575.13 547.86 605.38
BadRank 536.70 594.28 495.19 747.35 445.82 642.29 349.47
ParentPenalty 450.11 382.92 357.30 412.71 501.56 531.11 475.20

C
on

te
n

t

RTL-CC 800.50 790.44 819.56 763.36 808.87 785.67 833.51
AZProtect 762.55 747.67 781.20 716.99 774.76 748.46 803.04
SVM-Linear 758.48 740.29 788.46 697.71 772.95 737.09 812.42
Logistic Reg. 738.94 721.17 754.13 691.10 753.48 727.49 781.47
SVM-RBF 720.87 697.53 747.28 654.48 739.24 702.95 779.89
SVM-Poly 709.18 687.06 722.50 655.10 727.09 699.35 757.25
Bayes Net 708.00 690.71 708.89 673.54 722.62 707.36 738.63
Naı̈ve Bayes 700.61 660.65 760.90 584.09 729.07 666.94 804.19
C4.5 692.17 671.39 695.95 648.53 709.47 689.24 730.95
Neural Net 688.49 665.99 696.50 638.25 706.99 682.77 733.16

Fig. 11. Preprocessing step results for comparison stack classifiers.

3 underlying classifiers as features provided the best performance for the stacks. In
the case of SVM-RBF, four base classifiers were employed (i.e., AZProtect, SVM-linear,
QoC, and Logistic regression). The best setting for each of the 8 stack classifiers was
compared against RTL in the ensuing experiments.

Table VIII shows the experimental results across the 30 bootstrap runs. RTL out-
performed all 8 comparison stack classifiers in terms of overall accuracy and class-level
f-measures, precision, and recall. RTL’s performance gain over the comparison stack
classifiers was between 4% and 8% in terms of overall accuracy. While RTL outper-
formed the comparison stack classifiers on legitimate and fake medical Web sites, the
performance gain was particularly large on the legitimate Web sites (as evidenced by
the class-level recall values). In other words, RTL had considerably lower false positive
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Table VIII. Results for RTL in Comparison with Content and Graph-Based Methods

Algorithm Overall Legit Fake
Accuracy F-meas. Prec. Recall F-meas. Prec. Recall

RTL 94.33 93.83 96.22 91.55 94.76 92.80 96.80

S
ta

ck

Logistic Reg. 90.16 88.94 94.44 84.05 91.14 87.09 95.60
SVM-Poly 89.92 89.00 91.47 86.66 90.70 88.68 92.82
Bayes Net 89.63 88.31 94.06 83.22 90.69 86.47 95.33
Neural Net 89.34 88.30 91.34 85.45 90.21 87.77 92.80
SVM-Linear 88.81 87.65 91.22 84.34 89.77 86.96 92.78
C4.5 88.52 87.25 91.38 83.47 89.56 86.36 93.00
SVM-RBF 86.92 85.84 87.53 84.22 87.86 86.43 89.33
Naı̈ve Bayes 86.02 84.57 87.94 81.45 87.21 84.53 90.07

Fig. 12. Classification graphs for content (left) and graph-based (right) method.

rates (with 5% to 10% higher recall on legitimate Web sites), whereas the comparison
methods were prone to misclassifying legitimate Web sites as fake. With respect to the
comparison stack classifiers, Logistic Regression and SVM-Polynomial had the best
performance, followed by Bayesian Network and Neural Net. Considering that the
stack classifiers were retrospectively tuned for optimal performance (see Figure 11),
the results especially underscore RTL’s enhanced effectiveness over comparison stack
classifiers.

Pairwise t-tests were conducted on the accuracy values for the 30 bootstrap runs
(n = 30). The t-tests compared RTL against the 8 stack classifiers. For all 8 t-tests,
RTL significantly outperformed the stack classifiers (all p-values < 0.001). The results
suggest that the effectiveness of RTL was partially attributable to the complemen-
tary information provided by its underlying RTL-CC and RTL-GC methods. Figure 12
shows the classification graphs for RTL-CC (left side) and RTL-GC (right side) from
a bootstrap run where RTL attained very good results. The blue (legitimate) and red
(fake) nodes indicate training sites or correctly classified testing sites. The misclassi-
fied sites are colored black and contained within the black ovals. Both RTL-CC and
RTL-GC misclassified approximately 4% of the test Web sites. However, the two sets
of misclassifications were mutually exclusive. RTL-GC’s misclassifications (depicted
in the right side of Figure 12) came from three regions where legitimate Web sites
were positioned in areas predominantly composed of fake sites, and vice versa. In con-
trast, RTL-CC’s misclassifications (which were based on content-based similarities)
came from various regions of the graph; many of these sites were correctly classified
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Fig. 13. Illustration of RTL’s recursive labeling mechanism.

by the graph classifier. By using predictions from both classifiers in unison, RTL was
able to correctly classify over 98% of the sites for this particular bootstrap run.

Another critical component of RTL was its use of recursive labeling. Figure 13
illustrates how RTL was able to gradually improve its performance by recursively
relabeling test instances as additional information became available. The figure shows
RTL’s performance through six iterations (i.e., d = 50 to d = 300) for a particular boot-
strap run. As with the previous figure, blue and red nodes indicate training sites or
correctly classified testing sites, while the misclassified sites are colored black and
contained within black circles. Initially, there were approximately forty misclassified
instances. However, the number decreased during subsequent iterations, until only
eleven instances were eventually misclassified. Collectively, Figures 12 and 13 exem-
plify how RTL’s use of complementary information from powerful underlying content
and graph classifiers, and its recursive labeling mechanism facilitate the enhanced
detection of fake Web sites.

6.4. Robustness Analysis of RTL in Comparison with Stack Classifiers

Robustness analysis was conducted for RTL in comparison with the stack classifiers.
The experimental setup employed was the same as in the prior robustness experiment
(Section 6.2): each algorithm was run using 10%−100% of the original training data
(in 10% increments), for each of the 30 bootstrap runs. Table IX shows the AUC values
for RTL and the 8 comparison stack classifiers. RTL had better overall accuracy and
class-level f-measures than the 8 stacks. It outperformed the comparison stacks by
67–134 points in terms of AUC values for overall accuracy. These gains were evident
on legitimate and fake Web sites; RTL’s class-level f-measures were at least 59−78
points higher than the best stack classifier. With respect to the comparison methods,
Logistic regression and SVM-Poly had the best performance.

Figure 14 shows the overall accuracy and class-level f-measure graphs for the 8
stack classifiers, compared against RTL. The y-axes indicate accuracy while the x-axes
display the percentage of the original training data used. Based on the overall accuracy
performance gaps, it is apparent that RTL outperformed all of the stack classifiers,
and generally by a wide margin. This improvement was largely due to better perfor-
mance on legitimate Web sites, where RTL had f-measures that were consistently at
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Table IX. AUC Values for RTL in Comparison with Stack Classifiers

Algorithm Overall Legit Fake
Accuracy F-meas. Prec. Recall F-meas. Prec. Recall

RTL 837.22 831.57 852.67 811.52 842.00 824.72 860.06

S
ta

ck

Logistic Reg. 770.46 753.44 803.93 708.98 783.93 746.71 825.11
SVM-Poly 770.18 758.78 777.51 740.96 779.87 764.26 796.15
Bayes Net 762.13 743.21 797.21 696.12 776.97 737.61 820.80
SVM-Linear 736.59 720.34 748.72 694.11 750.13 727.43 774.36
Neural Net 722.03 705.12 729.24 682.63 736.22 716.58 757.06
SVM-RBF 717.01 679.73 667.88 692.88 743.28 753.98 733.41
C4.5 716.16 703.38 712.53 694.69 727.33 719.77 735.24
Naı̈ve Bayes 703.55 652.78 662.44 643.73 736.96 730.77 743.43

Fig. 14. Robustness results for RTL (thick solid) and stack classifiers.

least 5%−14% higher than the best comparison stacks. As previously alluded to, RTL’s
improved recall on legitimate Web sites resulted in lower false positive rates. RTL’s
enhanced performance was also attributable to its ability to attain considerably better
performance when using very little training data (i.e., 10%–20%). It attained 91.1%
accuracy when using only 30 training sites. This suggests that the adaptive learning
mechanism used by RTL is highly effective at accurately classifying legitimate and
fake medical Web sites even when the number of known good and bad instances is
very small. In contrast, the stack classifiers performed very poorly when the amount
of available training data was limited. For instance, SVM-Linear, SVM-RBF, Neural
Network, and Naı̈ve Bayes all had accuracies close to 60% when using 10% of the train-
ing data. Even the best stack classifiers (Logistic regression and SVM-Polynomial) had
overall accuracies of 69% and 76% respectively, when using 10% of the training data.
Conversely, RTL had approximately 88% accuracy when using the same quantity of
training instances. Hence, RTL’s performance gain was larger for smaller training
set sizes; it outperformed all comparison methods by at least 10% in terms of overall
accuracy when using 10%−20% of the training data.
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6.5. Results for RTL in Comparison with Adaptive Methods
We evaluated the effectiveness of RTL in comparison with three existing adap-
tive methods: Combinatorial Feature-Fusion [Tian et al. 2007], Secondary Classifier
Approach [Gan and Suel 2007], and Stacked Graphical Learning [Castillo et al. 2007].
For Combinatorial Feature-Fusion (CFF), we first extracted 207 features for each Web
site in the dataset as suggested by Tian et al. [2007]. Initially, each bag-of-word in the
training data was weighted using the authors’ proposed rank performance weighting
method. The 200 bag-of-words with the highest weight were included in the feature
set. Also included were seven “engineered” features, five of which were as follows: the
number of inbound/outbound links to/from this site, the fraction of total links that were
inbound/outbound, and a binary feature that was “1” if any of the bag-of-words’ tf-idf
values were above 0.2. The two remaining “engineered” features were the percentage
of the 500 hotwords (most frequently occurring words in the test bed) covered by the
site and the percentage of total unique words in a site that were hotwords. These 207
features were used to train a rough ADTree classifier [Anderson and Moore 1998] that
was applied to all the nontraining site nodes in the graph. Once each site in the graph
had a label (where the training sites had their actual label while the remainder had
the one predicted by the “rough” classifier), four additional features were generated
for each graph node. These were the number of inbound/outbound fake links and the
percentage of inbound/outbound fake links. These features were added to the original
207, and the resulting 211 features were used to retrain and rerun the rough classifier
on all the nontraining sites. After this second round of rough classification, the four
graph-based features were recomputed for each node. This final set of 211 features
were fused (in pairs of two) and a subset of these fused features were employed in the
final ADTree model, following the approach taken by Tian et al. [2007].

Gan and Suel [2007] evaluated several relabeling methods for improving the perfor-
mance of an underlying classifier and found the Secondary Classifier Approach (SCA)
to be the most effective. Following the SCA approach, we initially trained a basic
classifier [Gan and Suel 2007]. A C4.5 decision tree model [Quinlan 1986] was built
using 25 features which included 8 content, 14 link, and 3 domain registration-based
attributes. The basic classifier was applied to all the nontraining nodes in the graph.
A secondary C4.5 classifier was then trained using seven features for each site, which
included: the basic classifier’s prediction label and confidence score, the percentage of
incoming/outgoing links from/to fakes, and the fraction of weighted fakes in the incom-
ing/outgoing neighbors (where the neighbor nodes’ weights were based on their basic
classifications’ confidence scores). This secondary classifier was used to assign a final
label to each node.

For Stacked Graphical Learning (SGL), we initially trained a base C4.5 classifier
[Castillo et al. 2007]. The classifier used numerous link and content-based features
adapted from Becchetti et al. [2006] and Ntoulas et al. [2006]. The link-based features
included degree-based measures and ones derived using PageRank and TrustRank,
amongst others. The content-based features included average word length, number of
words in the page title, amount of anchor text, fraction of visible content, n-gram oc-
currence likelihoods, etc. The base classifier was run on all nontraining nodes in the
graph. For each node in the data, an additional feature was computed: the fraction of
all in/out-link nodes that were classified as fake. This new feature was added to the
original feature set, which was used to retrain and rerun the base classifier. The pro-
cess was repeated for several iterations and the results from the iteration yielding the
best performance were reported. In the ensuing experiments, the best results were con-
sistently attained when running SGL for two iterations (same as Castillo et al. [2007]).

Table X shows the average experimental results across the 30 bootstrap runs. RTL
outperformed the three comparison adaptive methods across all seven evaluation
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Table X. Results for RTL in Comparison with Adaptive Methods

Algorithm Overall Legit Fake
Accuracy F-meas. Prec. Recall F-meas. Prec. Recall

RTL 94.33 93.83 96.22 91.55 94.76 92.80 96.80
SGL 90.59 89.51 94.07 85.38 91.46 87.99 95.22
CFF 89.56 88.70 90.42 87.05 90.30 88.86 91.80
SCA 87.02 85.40 90.71 80.68 88.31 84.37 92.65

metrics (all pair–wise t-test p-values were significant at alpha of 0.05). The perfor-
mance gains in terms of overall accuracy and class-level f-measures were between
3.3% and 8.4%. Interestingly, the best stack classifier (Logit Regression from Section
6.3) outperformed two of the three comparison methods. This result suggests that
the information from powerful graph-based classifiers may serve as better input
features for secondary classifiers than the relatively simpler link-based attributes
adopted by certain adaptive methods. The Logit stack used QoC node scores as an
input feature for enhanced performance. It is therefore no coincidence that SGL, the
adaptive method that attained the best results, used various measures derived from
the PageRank and TrustRank algorithms as input features. Similarly, RTL-GC played
an integral role in RTL’s enhanced performance, as illustrated in Figure 12. Another
important factor, which was alluded to in Section 4.3, was that all three comparison
adaptive methods used semi-supervised learning to generate new features, which
were added to the training data. This caused the relabeling process to plateau after
1–2 iterations, as noted in previous studies and also observed in this experiment.
In contrast, RTL’s recursive labeling mechanism actually adds new instances to the
training models, thereby allowing performance to improve across several iterations
(as illustrated in Figure 13).

Robustness analysis was conducted for RTL in comparison with the adaptive meth-
ods. Two different experimental settings were used. The first was similar to the setup
employed in the prior robustness experiments: each algorithm was run using 10%–
100% of the original training data (in 10% increments), for each of the 30 bootstrap
runs. In the second setting, we analyzed the impact of class imbalance on the perfor-
mance of the online pharmacy and medical institution segments of the test bed. This
was done by varying the quantity of minority class instances in the training data from
5% to 100% in increments of 5%, while holding the majority class instances constant.
In the case of online pharmacies, since fraudulent pharmacies outnumber legitimate
ones and therefore constitute the majority class, we kept the quantity of fraudulent
training instances constant while fluctuating the number of legitimate instances. In
contrast, the number of legitimate medical institution sites was held constant while
the number of fraudulent ones was varied. This setting was included to assess the im-
pact of using imbalanced training data on the performance of adaptive methods; since
an equivalent quantity of known legitimate/fake medical instances may not always be
readily available [Aphinyanaphongs and Aliferis 2007]. For this imbalanced setting,
receiver operating characteristic (ROC) curves were generated in order to show the
tradeoffs between true positive and false positive rates.

Figure 15 displays the robustness results using the standard setup (tops) as well
as the imbalanced setting (bottom). For the balanced setting, RTL outperformed all
three comparison methods in terms of both legit and fake recall. The performance
margins appeared to increase as the quantity of training data decreased. While using
imbalanced training data, RTL’s ROC curves dominated the three comparison meth-
ods on both datasets, suggesting that RTL provided better ratios of true positives to
false positives than the three comparison adaptive methods across different levels of

ACM Transactions on Information Systems, Vol. 30, No. 4, Article 22, Publication date: November 2012.



22:28 A. Abbasi et al.

Fig. 15. Robustness results for RTL and adaptive methods: Legit and fake F-measures using balanced
training data (top); ROC curves using imbalanced training data for online pharmacies (bottom left) and
medical institutions (bottom right).

imbalanced pharmacy or medical institution data. All methods performed better on
the online pharmacy subset of the test bed (as compared to medical institutions). This
is likely due to the small quantities of fraudulent medical institution instances in the
dataset. RTL’s AUC values were higher than the comparison methods, for both the bal-
anced and imbalanced settings. The results further demonstrate the efficacy of RTL
over existing adaptive methods.

6.6. Analysis of Performance on Different Medical Web Site Categories

In order to demonstrate RTL’s effectiveness for detection of different categories of fake
medical Web sites, we analyzed its performance on all three subsets of the test bed:
online pharmacies, health information, and medical institution Web sites. The per-
formance on each category was evaluated using overall accuracy and class-level f-
measures, precision, and recall, averaged across the 30 bootstrap runs (as done in the
previous experiments). Hence, for each of the 30 bootstrap runs, these performance
metrics were computed on the three subsets of the 850 test instances. RTL’s perfor-
mance was analyzed in comparison with the best content, graph, stack, and adaptive
methods reported in Sections 6.1–6.5.

Table XI shows the results. For each of the 5 methods (i.e., RTL, AZProtect, QoC,
Logistic Regression stack, and SGL), the results on the each Web site category are
depicted along with the overall results across all sites. In addition to being more accu-
rate, RTL was also the most balanced. It attained overall accuracies in excess of 90%
on all three Web site categories, outperforming the best comparison methods by at
least 1.5%−6.5% on each category. The performance gains were largest on the health
information Web sites.

Figure 16 shows a panoramic view of the 7 evaluation metrics on the overall test
bed as well as the three categories. The figure hence depicts a sequential plot/curve
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Table XI. Results by Web Site Category for RTL and Best Comparison Methods

Algorithm Overall Accuracy
Legit Fake

F-meas. Prec. Rec. F-meas. Prec. Rec.
R

T
L

Pharmacy 97.84 96.08 93.01 99.37 98.51 99.77 97.28
Health Info 91.25 90.86 97.72 84.90 91.61 86.06 97.92
Medical Inst. 93.82 96.34 96.77 95.90 80.27 78.35 82.27
Overall 94.33 93.83 96.22 91.55 94.76 92.80 96.80

S
G

L

Pharmacy 95.54 91.82 89.98 93.74 96.94 97.68 96.20
Health Info 86.68 85.66 95.53 77.65 87.57 80.38 96.18
Medical Inst. 88.75 93.20 95.52 90.98 67.47 60.43 76.36
Overall 90.59 89.52 94.08 85.38 91.46 87.99 95.22

L
R

S
tk

Pharmacy 95.72 92.19 89.79 94.73 97.05 98.04 96.08
Health Info 84.99 83.48 95.65 74.06 86.24 77.97 96.46
Medical Inst. 90.14 94.01 96.79 91.39 72.05 63.54 83.18
Overall 90.16 88.94 94.44 84.05 91.14 87.09 95.60

A
Z

P
ro

Pharmacy 93.78 88.69 86.13 91.42 95.71 96.80 94.64
Health Info 83.89 82.67 92.12 74.97 84.95 78.01 93.26
Medical Inst. 88.06 92.71 95.96 89.67 66.92 58.00 79.09
Overall 88.56 87.26 91.73 83.20 89.63 86.21 93.33

Q
oC

Pharmacy 94.82 90.23 91.45 89.27 96.47 96.14 96.84
Health Info 79.28 77.25 88.29 68.66 80.98 73.31 90.43
Medical Inst. 84.42 90.11 94.69 86.67 59.46 52.94 71.97
Overall 86.39 84.50 91.02 78.85 87.86 83.19 92.38

Fig. 16. Comparison of RTL and comparison methods on overall test bed and online pharmacy, health
information, and medical institution Web site subsets.

of the 28 evaluation metrics associated with each of the four comparison methods.
For instance, on the horizontal axis above “overall,” LF, LP, and LR correspond to
the overall legit f-measure precision, and recall. The figure further reaffirms RTL’s
effectiveness over the best comparison methods; it performed better on nearly every
evaluation metric across Web site categories. These results suggest that RTL is better
suited for detecting fake online pharmacy, health information, and medical institution
Web sites.

7. RESULTS DISCUSSION

Based on the results presented in Section 6, RTL’s enhanced performance was
attributable to its content and graph classifiers, as well as the recursive labeling mech-
anism. Detailed analysis was performed in order to assess the impact of these compo-
nent’s parameter settings on RTL’s overall performance. For all three components of
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RTL, 9 different parameter combinations were run while holding the other two RTL
component’s parameter values constant (these were held at the values used in the
experiments described in Section 5). The RTL-CC content classifier was run using
values of 50, 100, and 200 for x (i.e., pages per Web site), and 10, 15, and 20 for l.
The RTL-GC graph classifier was run using values of 0.3, 0.5, and 0.7 for α, and 0.25,
0.50, and 0.75 for β. The recursive labeling mechanism was run using p = 5 through
p = 200, in various increments. The first three charts depicted in Figure 17 show the
results for each component’s 9 parameter combinations (top left/right and bottom left
charts). For each chart, the x-axis displays the seven evaluation metrics. For example,
OA denotes overall accuracy while LP and FR are legit precision and fake Web site
recall, respectively.

The results from these three charts reveal that while the class-level f-measure, pre-
cision, and recall values fluctuated somewhat for different parameter settings, the
overall accuracy values were fairly stable (ranging between 93.0% and 95.5%). More-
over, the parameter settings used in the experiments did not yield the best results.
Running the graph classifier using α = 0.70 and β = 0.75, while keeping the content
classifier and recursive labeling mechanism’s settings unchanged, improved overall
accuracy to 95.28%. Similarly, running the content classifier using x = 200 improved
overall accuracy to 95.54% (the setting used in the experiments was x = 100). As ex-
pected, the recursive labeling mechanism worked best when using smaller values for
p (i.e., p = 5 through p = 25). However, the recursive labeling mechanism’s parameter
settings were less influential than the content and graph classifiers’ in terms of their
impact on performance. For instance, using p = 5 only yielded a 0.3% gain in accuracy
over using p = 50.

In order to assess the combined effect of the three components’ parameters on RTL’s
performance and computation time, we ran all possible combinations of the aforemen-
tioned parameter’s values without holding any component’s settings constant. This
resulted in 729 parameter combinations (i.e., 9 x 9 x 9). For each setting, the bottom
right chart in Figure 17 depicts the ratio of true positives to false positives on the y-
axis (as a measure of overall effectiveness of each particular parameter combination),
and RTL’s average computation time per Web site, in seconds. Based on the chart, it is
apparent that for most parameter settings, RTL’s average computation time per Web
site was less than 2 seconds. The recursive labeling component’s p parameter had the
greatest impact on computation times, with smaller values resulting in greater run
times. For instance, the right-most cluster in the chart (at 4 seconds per Web site)
are the results when p = 5, while the next cluster (at 2 seconds) are the results when
p = 10. As previously alluded to, these higher run times did not lead to significant per-
formance gains. The results reported in Section 6 (which used p = 50) had an average
run time of 0.75 seconds per Web site. Overall, the analysis results suggest that RTL
is fairly consistent across parameter settings with respect to its fake medical Web site
detection capabilities.

7.1. Analysis of RTL’s Recursive Labeling Mechanism’s Performance

We assessed the impact of alternate stopping rules and the performance of RTL-GC
and RTL-CC on the performance of the recursive labeling mechanism. For the stop-
ping rule analysis, we compared the current rule, where all testing instances were
eventually added to the training model (Add-All), against a rule where the recursive
labeling stopped when the remaining additional instances had a rank of 2m (Stop-2m)
and a rule where all the 2m instances were ranked in descending order (Rank-2m)
based on the difference between the absolute values of the prediction scores associ-
ated with RTL-CC and RTL-GC (i.e., CC(S) + GC(S)). The major difference between
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Fig. 17. Impact of graph classifier (top left), content classifier (top right), recursive labeling mechanism
(bottom left), and combinations of parameter settings (bottom right) on RTL’s performance.

Table XII. Results Using Different Stopping Conditions for RTL’s Recursive Labeling Mechanism

Algorithm Overall Accuracy
Legit Fake

F-meas. Prec. Recall F-meas. Prec. Recall
Stop-2m 94.64 94.15 96.68 91.75 95.05 92.99 97.20
Rank-2m −0.12 −0.13 −0.16 −0.10 −0.11 −0.09 −0.13
Add-All −0.31 −0.33 −0.46 −0.20 −0.29 −0.19 −0.40

Add-All and Rank-2m was that for the former, 2m instances were added arbitrarily
to the training models, while for the latter, instances where one of the underlying
classifiers was more confident about its predictions were added earlier. Table XII shows
the evaluation results. Both the Stop-2m and Rank-2m stopping conditions attained
better results than the Add-All approach adopted in this study. The results suggest
that filtering at least some of the 2m instances (i.e., ones where RTL-CC and RTL-GC
disagree) during the recursive labeling phase may be beneficial. Additional analysis
revealed that the number of 2m instances decreased across iterations of the recur-
sive labeling mechanism, therefore, the number of 2m instances actually added to the
training data signified a small percentage. Consequently, the performance differences
for the three stopping conditions were not major. However, the performance of these
different stopping conditions at an iteration-by-iteration level revealed that some 2m
instances did increase discriminatory potential when incorporated in the training set.
Based on these findings, future work that explores the impact of more in-depth stop-
ping conditions that can better leverage such test instances may be warranted.

We also conducted analysis in order to gain empirical insights regarding the impact
of the underlying RTL-CC and RTL-GC classifiers’ performances on the effectiveness of
the recursive labeling mechanism. In our analysis of RTL across the 30 bootstrap iter-
ations, we observed that the performance of the recursive labeling mechanism seemed
to be somewhat impacted by the average accuracy across the two underlying classi-
fiers (RTL-CC and RTL-GC), as well as the difference in accuracies between these
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Fig. 18. Impact of RTL-CC and RTL-GC performance on effectiveness of recursive labeling mechanism.

two classifiers. To further explore these relations, we ran 100 bootstrap iterations of
RTL. Figure 18 shows the results. Each point represents one of the 100 runs. Both
charts depict the percentage gain in accuracy when using recursive labeling (on the
y-axis) over whichever underlying classifier had better performance. For the chart on
the right, the x-axis displays the average percentage accuracy of the two underlying
classifiers. The chart on the left shows the percentage difference in accuracy between
the two underlying classifiers on the x-axis. Based on the trend lines, we note that
the recursive labeling mechanism’s margin of improvement over the best underlying
classifier was greater when the performance difference between RTL-CC and RTL-GC
was lower, and to a lesser extent when the average accuracy of RTL-CC and RTL-GC
was higher. In other words, the underlying classifiers complemented each other the
most during the recursive labeling phase when their accuracies were comparable and
higher.

8. CONCLUSIONS

In this work we proposed RTL, a metalearning algorithm that uses an adaptive learn-
ing mechanism in conjunction with information from underlying content and graph-
based classifiers specifically designed to exploit the characteristics of online medical
content. RTL-CC and RTL-GC were able to significantly improve results over various
comparison graph and content classifiers. RTL attained an overall accuracy of over
94% and outperformed comparison stack classifiers and adaptive methods, demon-
strating its viability for detection of fake medical Web sites. Additionally, robustness
analysis results revealed that it was less susceptible to poor results when dealing with
limited quantities of training Web sites. RTL was generally able to perform well when
using as little as 15–30 training Web sites. Analysis of the performance results across
medical Web site categories showed that RTL was fairly balanced in its detection ca-
pabilities; it attained over 90% accuracy on all three test bed subsets (online phar-
macy, health information, and medical institution Web sites). Further detailed anal-
ysis demonstrated RTL’s effectiveness across different parameter settings; it was able
to consistently and efficiently distinguish legitimate medical Web sites from fake ones
at a high level of accuracy.

The experimental results provide several important insights. RTL-GC’s use of si-
multaneous dual class propagation across in/out links was more effective than existing
graph-based methods. The complexity of content associated with the medical domain
necessitates the use of more robust, domain-specific content classifiers. RTL-CC’s use
of a medical thesaurus and redundancy reducing feature extractor allowed a better
coverage of medical concepts, and played an integral role in RTL’s enhanced detection
of fake health information sites. RTL’s combination of robust underlying classifiers
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and instance-centric recursive labeling mechanism made it more effective than stack
classifiers and existing adaptive methods which rely on iterative feature construction.

In our future work, we intend to further assess the impact of different stopping rules
and instance ranking strategies on the performance of the recursive labeling mecha-
nism. We also intend to examine the potential to develop additional empirical insights
about RTL’s likelihood to improve over its underlying classifiers. Given the dire social
implications associated with the rampant sale of fake pharmaceuticals, phony med-
ical institutions, and increased medical misinformation, the results have important
implications for online trust and security in the era of Health 2.0.
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