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A B S T R A C T

We propose a Discussion Logic-based Text Analytics (DiLTA) framework, which combines theories developed in
social science and text mining fields. The framework extracts features that uncover discussion logic and uses
these features in analyzing online discussions. A series of models are proposed including conversation disen-
tanglement, coherence analysis, and visualization. Validation experiments showed that DiLTA achieved sig-
nificantly superior performance over existing text analytics methods in reconstructing internal structure. A case
study using DiLTA-enabled visualization on a healthcare forum illustrates the great potential of DiLTA in as-
sisting comprehension of the internal linkage, structure, and logic of online group discussions.

1. Introduction

The rapid growth of online communities has dramatically changed
the manner in which communication takes place [1]. Online group
discussion is a type of computer-mediated communication (CMC) that
involves multiple participants and is adopted in online interest sharing,
collaborative work, online courses, gaming, technical support, and
military command and control [1–4]. There are many situations in
which the timely analysis of online group discussion is needed. Orga-
nizations can derive considerable benefits from using online group
discussion, including increased speed of access to knowledge, enhanced
identification of experts, increased number of successful innovations,
and reduced costs of communication and operations [5,6]. Teachers can
benefit from summarized online discussions for later review [7].
Moreover, military decision makers strive to gather important and ur-
gent information from online discussions in a timely manner [2].

Structured discussion provides many advantages. It leads to quicker
cognitive comprehension and deeper understanding and facilitates the
decision-making process [8]. It also reveals the structure of social net-
works, highlighting the connectivity, clustering, and strengths of the
relationships among users [9]. In social science, many efforts have been
made to create or recover the structure of conversations to facilitate
analysis. However, most of the analyses have to be done manually [10].
Vronay, Smith, and Drucker [11] manually coded for intermessage re-
ferences to recover the structure of a chat log. Nash [12] manually

analyzed 1099 turns from Yahoo! Chat and found that the lag between a
message and its response can be as many as 100 turns; she then con-
cluded that nearly half of all turns were “off-topic.” Holmer [10] used a
combination of manual referencing and automatic content analysis to
create a visualization of messages and interaction structures. Guided by
Toulmin’s model, Savolainen [13] manually identified argumentation
patterns from Yahoo! Answers’ 100 discussion threads. While these
manual approaches tap into both semantic and pragmatic analyses, they
cannot deal with large-scale data. Their work provides theoretical
foundations for discussion analysis. Among them, Toulmin’s model
provides a schematic representation of the procedural form of argu-
mentation [13–15]. It is widely verified and adopted in various bodies
of discourse analysis research such as e-commerce [16,17], science
education [18], and home security [19].

On the other hand, automatic analysis of online group discussions is
developing in the areas of summarization, topic detection, and expert
identification. Such automatic analysis focuses only on identifying the
gist semantics of a discussion [20]. However, social science research
requires a deeper understanding of information flow and user interac-
tion behavior. These are difficult to detect automatically, especially
when the reply-to structure is explicit and is hidden in the conversation
context. Hidden online discourse structures prevent researchers from
constructing a holistic and contextual presentation from interrelated
messages [21,22]. While social scientists have largely applied the
manual approach to reconstruct discussion sequences by adopting
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various schemas and models, to our knowledge, it has not yet been used
in automatic discussion analysis.

There are two major challenges in automatic discussion analysis:
intertwined and incoherent textual message contents [23]. Because
discussion involves multiple users communicating at the same time,
their message sequence is often disrupted. This further causes the “in-
formation entropy” problem, where incoming messages are not suffi-
ciently organized by topic, and as a result, the content can be difficult to
comprehend [24]. Intensive interactions among a large number of
participants can further complicate this problem [25]. Thus, advanced
analysis of online group discussions relies on the ability to identify
subtopics and their corresponding messages as well as the ability to
reconstruct message orders. The former is referred to as conversation
disentanglement [26] and the latter as coherence analysis [27].

To address the gap in the existing research, we design and develop a
Discussion Logic-based Text Analytics (DiLTA) framework to support
the analytics of online discussions. This is the first body of research that
links the theories and models related to argumentation and techniques
developed in text analytics to automatic discussion analysis [28]. Our
approach addresses two fundamental tasks in online discussion ana-
lysis: (1) conversation disentanglement and (2) coherence analysis. We
evaluated DiLTA framework in a series of experiments that demonstrate
the utility of two components in comparison with the existing methods.
Furthermore, we show a tree-like representation—a discussion analysis
tree (DATree)—generated from automatically reconstructed online
discussions, and we discuss its usefulness.

The remainder of the paper is organized as follows. First, we review
work related to discussion logic including Toulmin’s model and how it
has been widely used for manual analysis in social science research. We
then review work related to the two major challenges in automatic
online discussion analysis: conversation disentanglement and co-
herence analysis. The next section describes the design of DiLTA fra-
mework that attempts to enable better and deeper analysis by identi-
fication and incorporation of discussion logic in text analysis. The
following section presents a robust evaluation of various facets of the
proposed system and illustrates the usefulness of such automatic ana-
lysis in various content analytics scenarios. Finally, we conclude the
paper with contributions and future directions.

2. Related works

2.1. Discussion logic

Online group discussion resembles argumentation and collaborative
decision-making. Such process has been studied in social science where
argumentation models are proposed to provide insights into the char-
acteristics of online discussion [15,16,18,29]. For example, Toulmin’s
model [16] offers a generic representation of all arguments that com-
monly appear in daily communication, collaborative business decision-
making, and science education. It reveals the nature of the argument
process, especially in tracing the solver’s line of discussion, and can be
used to guide automatic group discussion analysis. The original model
has six argument elements, four of which appear frequently in daily
communication: claim, data, backing, and rebuttal [16].

Other studies group the elements in Toulmin’s model into primitive
and derivative statements. A primitive message is a stand-alone assertion,
and a derivative message is obtained as a strictly logical or defeasible
consequence of others. For example, Raghu, Ramesh, Chang, and
Whinston [15] modeled collaborative decision-making as a dynamic
process in which individuals assert their positions through both primi-
tive and derivative statements. Although an individual could make a
primitive assertion, a cogent argument requires the assertions to be
linked and organized in some logical sense. Therefore, the following
logical argument structure proceeds in the form of response exchanges
between its proponents and opponents. On the basis of simulation ex-
periments for four types of decision problems, Carbogim, Robertson,

and Lee [30] found that a group discussion can be represented in a two-
step process: “First, arguments are generated; then, arguments are
evaluated in terms of their acceptability.” Group discussion is an in-
tertwined, repetitive process of subtopic and solution generation and its
evaluation. We refer to the generation of primitive and derivative
messages as discussion logic. The identification of discussion logic is the
key to comprehending group discussion content.

In group support system (GSS) research, several studies have
manually reconstructed discussion message sequences following argu-
mentation and collaborative models [14,31]. Osborne [18] used the
Toulmin’s argumentation model to assess students’ progression in
capabilities with argumentation. Kim and Benbasat [16] used the model
to assist with investigating the trust-assuring conversation of an In-
ternet store. Raghu, Ramesh, and Whinston [19] used the connectionist
mechanism to support collaborative decisions made by home security
intelligence agencies. However, such manual processes are time con-
suming and labor intensive. Few automatic online discussion analyses
attempt to uncover the discussion structure that hinders deeper ana-
lysis.

2.2. Conversation disentanglement

The identification of discussion logic is challenged by the nature of
parallel, intertwined conversations [26]. Entangled conversations,
which are highly prevalent in various forms of CMC, including Web 2.0
technologies, occur as a result of multiple simultaneous conversations
between two or more users appearing within a single discussion thread
[32]. To avoid thread confusion, disentanglement is widely regarded as
an essential precursor for more advanced forms of discourse analysis
[33]. It is especially important “when there are several streams of
conversation and each stream must be associated with its particular
feedback” [34]. Consequently, disentanglement is antecedent discus-
sion logic identification.

Prior methods of disentanglement have mostly relied on single-pass
clustering methods that compare newer messages against existing
conversation clusters [30,33]. While these methods use information
regarding content similarity and spatial/temporal proximity between
messages, they do not incorporate information pertaining to conversa-
tion structure. According to Toulmin’s model, a conversation can be
decomposed into a beginning act that is succeeded by a series of “re-
acting” or “continuing moves” [35]. Hence, primitive message identi-
fication is of great importance for disentanglement [36]. However,
existing disentanglement methods do not attempt to explicitly identify pri-
mitive messages. Elsner and Charniak [26] noted that a “detector for
utterances which begin conversations could improve disentanglement
scores.” They empirically demonstrated that a hypothetical method that
incorporated enhanced information regarding conversation beginnings
could potentially improve performance over existing methods, and they
considered this an important future direction. Consequently, given the
importance of primitive messages, we believe that the identification of
primitive messages in conversation structures is an important step in
conversation disentanglement.

2.3. Coherence analysis

Text comprehension involves the construction of a coherent mental
representation of situations described by texts. In online group discus-
sions, coherence is represented in terms of reply-to relationships be-
tween messages [27]. Automatic coherence analysis attempts to offset
the incoherent nature of online discourse by correctly reconstructing
coherence relationships between messages using machine-learning al-
gorithms. Two important facets of coherence analysis are the features
and techniques that are used.

2.3.1. Coherence analysis features
Past research has used two categories of features to identify
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coherence relationships in CMC: system and linguistic features.
System features provide insights into the message context, including

header (e.g., date/time, message ID, and subject/title) and quotation
information [20]. For instance, Netscan extracted the “contents of
Subject, Date, Organization, Lines, Message ID and Reference lines” to
generate relationships in Usenet newsgroups, including conversation
trees [37]. Similarly, by detecting quoted text, Zest divided each mes-
sage into contiguous blocks of quoted or unquoted text to support text
analysis [38]. However, not all forms of group discussion contain a full
range of system features. They are often omitted, especially in syn-
chronous tools, where the only system information that can be ex-
tracted is the message ID and time stamp of each individual message.

Linguistic features derived from message content can also provide
important cues for coherence analysis. A number of linguistic features
have been researched for coherence analysis, including direct address,
coreference, lexical relationship, and semantic information [12,27,39].
Direct address occurs when a reply message includes the screen name of
the author of a previous message [39]. Lexical relationship is defined as
a “cohesive relation where one lexical item refers back to another, to
which it is related by having common referents” [12]. It has been
shown to be effective for coherence analysis [27]. Coreference also
occurs when a lexical item refers to a previously posted lexical item;
however, in this case, the relationship is implicit in that it can only be
identified by the context [40]. However, coreference identification is a
difficult problem in natural language processing (NLP); thus, it is
seldom used in coherence analysis [27]. With respect to semantic fea-
tures, prior work has incorporated overall message similarity by simple
textual analysis techniques, such as the bag-of-words approach [27].
Additional relevant forms of semantic information include opinions,
emotions, synonymy information, and parts of speech (POS). Such
features could be extracted by more advanced NLP techniques; how-
ever, they have not been widely adopted [20].

2.3.2. Coherence analysis techniques
Prior methods of coherence analysis include linkage, heuristic,

classification, and manual annotation.
Linkage methods construct interaction patterns using predefined

rules that are primarily based on system features and assumptions re-
garding message sequences [38,41,42]. Most linkage methods employ
two types of rules: direct linkage and naive linkage [27]. Direct linkage
rules assume that users follow system features to post messages and
clearly quote the messages to which they respond. Naive linkage rules
are then applied to residual messages that are unidentified by direct
linkage; these rules assume that all residual messages are responding to
either the first message in the thread or the previous message [43].
Linkage methods work fairly well with email-based discussion lists,
where “reply-to” relationships are more explicitly defined in message
headers, thereby allowing direct linkage rules to identify a large pro-
portion of interactions [37,38,41]. However, group discussions are
highly susceptible to disrupted turn adjacency [44]. Consequently,
linkage methods have not performed well when applied to web forums
or chat discussions [20,27].

Heuristic methods rely on metrics derived from observations of CMC
discourse [27]. These metrics are based on a small, fixed assumed set of
communication patterns pertaining to system and/or linguistic features
[45]. For instance, the hybrid interactional coherence method uses an
ordered list of heuristics, where messages unidentified by one heuristic
are then evaluated by the next heuristic on the list [27]. Similarly,
Khan, Fisher, Shuler, Wu, and Pottenger [36] used finite state automata
to identify interaction patterns in multiperson chat rooms. In many of
these methods, the choice of heuristics (and their order) was based on
prior observations of occurrence [12,27]. Consequently, the effective-
ness of heuristic methods is predicated on the validity and general-
izability of the set of incorporated heuristics.

Classification methods formulate coherence analysis as a binary
classification problem [46]. These techniques couple system and

linguistic features with supervised machine learning methods: pre-
dictive analytics algorithms that build models from a set of labeled
training data [4]. For example, to handle highly incoherent text from
student online forums, Kim and Kang [7] used supervised learning to
classify discussion threads. Soon, Ng, and Lim [40] adopted a machine
learning approach to identify coreferences of noun phrases both within
and across sentences, which have been used for discourse analysis and
language understanding. Ackerman [47] suggested that machine
learning methods may someday help reduce the gap between computer-
supported cooperative work systems and user discourse patterns.
However, as previously noted, the features used for interactional co-
herence analysis play a significant role. This is especially true in the
case of machine learning classification methods; their performance is
highly dependent on the feature sets employed [20]. Moreover, their
ability to learn and adapt to different conversation environments makes
them better suited for detecting conversation structures than heuristic
methods [4].

Manual methods rely on human annotators, who read the entire
discussion to reconstruct coherence relationships [48]. For example,
Nash [12] manually identified the occurrence of linguistic features,
including lexical relationships, direct address, and coreference, for co-
herence analysis. Linguistic experts are able to accurately identify co-
herence relationships in online discourse, because they possess a high
level of pragmatic competence [49]. Conversely, because of the chal-
lenging nature of the task, most (nonexpert) users are less effective
[44]. Regardless, manual methods typically outperform automated
approaches. Hence, although manual annotation results are obviously
not feasible for large-scale interactional coherence analysis, they are
often included in experimental studies as an upper bound to shed light
on the difficulty of the task [50].

Table 1 provides a summary of some important studies on coherence
analysis. As we can see, most studies focus on asynchronous online
communities where system features are available. A number of studies
have used both linguistic and system features. Although classification is
a promising technique in coherence analysis, it has not been widely
adopted. None of the existing research has incorporated discussion logic
as a feature of classification.

3. Discussion logic-based text analytics (DiLTA) framework

Group discussion is a repetitive process of subtopic generation and
evaluation. As previously alluded to, this process often results in si-
multaneous parallel conversations within a single discussion thread
[26]. Accordingly, social science studies can shed light on the re-
lationships between messages and conversations within a discussion.

Table 1
Select previous automatic coherence analysis studies on group discussion text.

Previous Studies Domains Features Techniques

D1 D2 F1 F2 T1 T2 T3 T4

Barcellini, Détienne, Burkhardt,
and Sack [48]

√ √ √

Smith [37] √ √ √
Newman [42] √ √ √
Yee [38] √ √ √
Sack [41] √ √ √
Fu, Abbasi, and Chen [27] √ √ √ √
Kim and Kang [7] √ √ √ √
Aumayr, Chan, and Hayes [46] √ √ √ √
Nash [12] √ √ √
Khan, Fisher, Shuler, Wu, and

Pottenger [36]
√ √ √

Soon, Ng and Lim [40] √ √ √

D1: asynchronous; D2: synchronous; F1: system features; F2: linguistic features;
T1: manual method; T2: linkage method; T3: heuristic-based method, T4:
classification-based method.
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Tracing the discussion logic is at the core of these argumentation
models. However, they have not been used much in automatic online
discussion analysis research. Automatic machine learning methods that
use discussion logic features are highly promising with regard to un-
covering discussion structures. To our knowledge, previous automatic
analyses have ignored such features, and these analyses are generic.

Most current research has studied only asynchronous social media.
An important part of today’s social media strongly resembles synchro-
nous discussion and is more complicated in nature [12,51]. Thus,
simple linguistic and system features alone may not be enough. We
believe that more advanced NLP techniques are needed to derive dis-
cussion logic features. According to Raghu, Ramesh, Chang, and
Whinston [15]’s model, we propose to extract discussion logic features to
be attributes that can shed light on the relationships between messages
and conversations within a discussion. Despite their importance for
sense making [32], discussion logic features have not been used much
in previous automatic discussion analysis research. Furthermore, to
assist people in analyzing discussion structure, we propose the use of
social network and tree-based graph representation to visualize the
coherence analysis results.

To address these research gaps, we propose a DiLTA framework for
discussing representation in online discourse (Fig. 1). The framework
takes online discussion messages as input. DiLTA has two major com-
putational components: conversation disentanglement and coherence
analysis. The output is a tree-based representation called a DATree. A
DATree shows disentangled conversations within a discussion thread,
with coherence relationships between messages. Such representation
can provide many desired insights for social science research. More-
over, the accuracy of a DATree depends on the performance of the two
computational components. The conversation disentanglement com-
ponent identifies primitive and derivative messages. This is achieved by
applying an innovative revised cosine similarity (RCS) measure and a
discussion segmentation algorithm (DSA). Coherence analysis further
uncovers the discussion structure through linking all the derivative
messages by identifying their reply-to relationship. This is done by a
machine learning algorithm called transformation-based learning
(TBL). The algorithm uses three types of features: system, linguistic, and
discussion logic. A residual matching (RM) algorithm is applied to
further improve the accuracy. We discuss the detailed design of each

component in this section.

3.1. Conversation disentanglement

The conversation disentanglement component of DiLTA uses lin-
guistic features to compute intermessage similarity, which is then used
as input for the proposed DSA.

3.1.1. Revised cosine similarity
Cosine similarity is a popular algorithm to measure the semantic

similarity between two documents [52]. Traditional cosine similarity
compares all terms that appear in two messages weighted by tfidf . Our
RCS improves the traditional method with two important refinements:
(1) using only the most important POSs to reduce the noise in messages
and (2) group semantically similar words to avoid unnecessary entries
in similarity vector. Research has shown that noun phrases and verb
phrases carry most of the important meaning in a sentence, while
conjunctions, adverbs, and adjectives are less important. Thus, we de-
fine meaningful terms to be nouns, noun compounds, named entities,
verbs, and verb phrases. Instead of considering every term within a
document, we focus only on the terms with these POS tags, thereby
narrowing the feature space to those terms that are most relevant to the
lexical chain. In addition, users often use different words to express a
similar meaning [12]. Thus, synonyms were considered by adopting a
dictionary-based similarity measure. We are interested in capturing the
semantic similarity between terms, and thus a dictionary-based ap-
proach is preferred over a context-based or a clustering-based ap-
proach. Specifically, we compute a similarity value coef between two
terms and incorporate this weight into the tfidf calculation, thereby
allowing for better representation of the semantic relationships be-
tween messages. coef is calculated using existing semantic dictionary
such as Xsimilarity. Xsimilarity [53] is an open source project that
calculates similarity between any two phrases, sentences, or text
documents in Chinese. The algorithm is based on both semantic re-
lationship between words defined in HowNet, a Chinese word ontology,
and an algorithm to calculate out-of-vocabulary (OOV) similarity. The
project source code is available at https://github.com/iamxiatian/
xsimilarity. This tool has been used by a number of researchers
[54,55] in studying semantic similarity in Chinese language. Linguistic

Fig. 1. DiLTA framework.

S. Deng et al. Information & Management 56 (2019) 536–551

539

https://github.com/iamxiatian/xsimilarity
https://github.com/iamxiatian/xsimilarity


parsing tools (such as LTP, available at https://github.com/HIT-SCIR/
ltp) were used to perform word segmentation, phrase identification,
POS tagging, and dependency tree parsing to construct synonym cate-
gories.

Our RCS measure for computing scores for similarity between a pair
of messages X, Y is shown in formulas (1)–(3).
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Rsim X Y( , ) is the score for the similarity between messages X and Y.
We first allocate terms with high similarity to the same category to
obtain k categories. A term belongs only to the category with the
highest similarity value retrieved from the dictionary. Each category k
here is similar to a term in the original cosine similarity measure. The
first term in the category has a coef value of 1. All other terms are then
represented as tf idf coef* * .

After the grouping process, messages X and Y are represented by
vectors ′x and ′y , respectively, in our Rsim formula (1). The coordinates
correspond to the weight of the categories. Formulas (2) and (3) re-
present the grouping process, where coefi

x( ) is a value for the similarity
between the ith term in message X and the first term in the same cate-
gory. Any two terms in the same category can be represented by ′x and

′x coef* i
x( ).

′
Sk

x( ) is the weight of the kth dimension of vector ′x . It is the
sum of the term weights for the category, as shown in formula (2). tfi

x( )

is the term frequency of the ith term in message X. idfi
x( ) is the inverse

document frequency of the ith term in message X.
We calculate the Rsim score for all message pairs in the discussion

thread, and the resulting vector is called msgSimList. Our Rsim cal-
culation is similar to the soft similarity score calculation proposed by
Sidorov et al. [56].

3.1.2. Discussion segmentation algorithm
To disentangle a discussion thread into its component conversa-

tions, we developed a DSA guide by prior studies on discussion logic,
specifically the work by Raghu, Ramesh, Chang, and Whinston [15] and
Carbogim, Robertson, and Lee [30]. As we mentioned in Section 2,
traditional methods of disentanglement have mostly relied on single-
pass clustering methods [30,33]. To discover discussion logic, i.e.,
primitive and derivative messages, DSA adopted the thematization me-
chanism, which linearizes a conversation to sequentially uncover im-
portant themes within a conversation thread [46]. The thematization
process uncovers conversation beginnings (i.e., primitive messages) and
conversation endings (which we refer to as marginal messages). Note
that during this phase, conversation relationships are not reconstructed.
Only primitive messages are identified. Derivative messages are con-
nected to their corresponding primitive messages during coherence
analysis. Fig. 2 illustrates the DSA segmentation process based on the-
matization mechanism vs. traditional single-pass clustering methods.

As depicted in Fig. 2, the proposed algorithm has three steps: (1)
select candidate primitive message, (2) find marginal message, and (3)
validate primitive message. In the first step, the selection of candidate
primitive messages is based on similarity between messages, msgSim-
List vector described in the previous section. If the similarity between
the current message and all previous messages is smaller than that
between the current message and all other messages, the current mes-
sage is considered as a candidate primitive message. The first message
of the entire thread is always a primitive message. The second step
identifies marginal message. A marginal message can appear only after
a primitive message. If the mean similarity between the current

message and a prior given candidate primitive message is the smallest
among all remaining messages, this current message is the marginal
message. In step 3, we rescan the entire thread to validate the candidate
primitive messages. The candidate primitive message is compared with
all messages between itself and its immediate ancestor primitive mes-
sage. If the mean variance of their similarity is greater than the mean
variance of the similarity between the candidate primitive message and
all messages, the candidate primitive message is a true primitive mes-
sage. Or, the mean similarity between the candidate primitive message
and the marginal message is greater than the mean average of the si-
milarity between the candidate primitive message and all messages; at
the same time, the mean average of the similarity between the candi-
date primitive message and all its prior messages is smaller than the
maximum similarity between the primitive message and all messages.
The detailed algorithm pseudocode is described in Fig. 3.

The rationale for the algorithm is that a message is associated with
the primitive message of a new conversation if it has low similarity with
most messages in the previous conversation and high similarity with
most messages belonging to the new conversation. This intuition is
operationalized using the mean and variance of the similarity between
messages. The output of the proposed algorithm is the discussion logic
feature: a mapping between messages and conversations within a dis-
cussion thread, where messages associated with the same conversation
have the same discussion logic feature value.

3.2. Coherence analysis

The identification of coherence relationships is modeled as a binary
classification problem, where each message pair in the discussion
thread either constitutes a reply-to relationship or does not. The attri-
butes used are a feature vector for each message pair; these feature
vectors are inputted into a machine learning classifier. Details re-
garding the coherence analysis features and classification technique are
as follows.

3.2.1. Coherence analysis features
DiLTA uniquely uses discussion logic features derived in the con-

versation disentanglement component in addition to system and lin-
guistic features. In asynchronous communication modes, such as email
and web forums, system features that are helpful in coherence analysis
include quotations and message headers. However, such features do not
exist in all discussions and especially not in synchronous discussions
(e.g., chat systems). Asynchronous discussions can become as difficult
to deal with as synchronous discussions when users choose not to quote
previous messages explicitly. In these cases, only message ID can be
captured automatically to determine message sequence and proximity.
This information is used to compute the distRange feature: the distance
between any two messages. While message proximity has been shown
to provide some utility in prior coherence analysis studies, its effec-
tiveness is diminished by the socio-technical gap [27] – in this case,
through the imposition of a simple, sequential ordering.

As previously alluded to, linguistic features are important for un-
derstanding the contextual elements and lexical relationships between
messages and, therefore, have important implications not only for
conversation disentanglement but also for coherence analysis. We use
two important linguistic features: message similarity and message
sentiment. The message semantic similarity between two messages
(simDegree) is computed using Xsimilarity tool described in the pre-
vious section. The message sentiment feature, sentiSeq, indicates
whether the message pair contains subjective or objective content.
Subjective messages are those that have greater sentiment polarity.
Sentiment information is useful because users often express their opi-
nion toward a prior message, and thus, it is likely to be a useful feature.
We adopt a straightforward approach to determine whether a message
is subjective or objective, where each term in a message is compared
against items in the sentiment lexicon to compute a subjectivity score.
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Similar to English sentiment lexicons such as SentiWordNet [57],
HowNet [58] is a Chinese sentiment lexicon that provides an effective
mechanism for inferring sentiment polarity. The lexicon is available at
http://www.keenage.com/html/e_index.html. Conversation disen-
tanglement information is essential for reducing the likelihood of
creating coherence relationships between messages from different
conversations [26]. On the basis of output from the DSA algorithm, two
discussion logic features are used for coherence analysis. The convoSeq
feature is used to denote whether any one message in the pair is a
primitive message of a conversation. The logicPosition feature pro-
vides information regarding the conversation affiliation of the two
messages. Thus, a total of five features are used: the system feature
distRange, the linguistic features simDegree and sentiSeq, and the
logic features convoSeq and logicPosition.

3.2.2. Coherence analysis technique
Once the features between all message pairs have been extracted,

coherence relationships are classified using the corpus-based machine
learning approach TBL. A RM mechanism is used to handle the re-
maining message pairs. We collectively refer to the TBL plus RM
method as TBL-RM.

3.2.3. Transformation-based learning
TBL has been successfully applied in spoken dialogue act classifi-

cation [59]. It starts by learning the best sequence of suitable “trans-
formation rules” from a training corpus (i.e., a set of message pair
feature vectors). Consistent with prior work [7], the training corpus
comprises all positive and negative (i.e., non-reply-to cases) reply-to
cases encompassed in a collection of conversations. For a given mes-
sage, negative cases are all previous messages with which they have no
reply-to relationship. Overall, the number of negative cases con-
siderably exceeds the number of positive cases. One advantage of TBL is
that the generated rules are easy to understand and interpret. Each rule
derived from TBL is composed of two parts: the combination of feature
values used as the input condition for the rule and the associated reply-
to relationship tag (i.e., classification result for the rule). For example,
“1 || 0 || || 0 || 2 || =>1” is a rule derived by TBL. The five feature
values are separated by “||.” This rule means that if distRange= 1 and
simDegree=0 and sentiSeq is any value and subtopicSeq=0 and lo-
gicPosition= 2, there is a reply-to relationship between the two mes-
sages.

3.2.4. Residual match
During classification, some messages may not fit any of the rules

used by TBL. This could be due to discourse ambiguity—a situation in
which coherence cues are not explicit in discussion messages and are
instead manifested in tacit knowledge that is difficult to express. A
residual match algorithm is applied to such messages; it uses a recursive
method that considers message pairs’ similarity and discussion logic. A
residual message is first matched to the most similar primitive message
ahead of it. It is then linked to the most similar derivative message from
that primitive message region, or the primitive message itself. Fig. 4
provides the pseudocode for the residual match algorithm. Once RM is
complete, the reply-to relationships between messages in a discussion
thread can be used to construct a conversation tree.

3.3. Discussion analysis tree

The visualization of a discussion thread structure can coherently
show the dynamics of communicative interaction and collaboration and
depict disentangled conversations [37,39]. It can allow users to better
understand the intricacies and nuances of group discussion in a cog-
nitively efficient manner [60]. For example, by the analysis of existing
visualization tools such as ArguMed, Convince Me, and Reason!Able,
van den Braak, Oostendorp, Prakken, and Vreeswijk [61] showed that
these tools contributed to high-quality discussion and more coherent
argumentation. Tree-based visualizations are particularly useful for
understanding online discourse [44]. There is a need for tree-based
representation to illustrate the usefulness in various content analysis
scenarios.

The conversation disentanglement and coherence analysis compo-
nents of DiLTA are combined to create a DATree for each group dis-
cussion. Such visualization can enhance people’s content analysis cap-
ability, provide a holistic view of the discussion, and assist in the
discovery of hidden meanings. Important subtopics are floated as top
branches, the sequence of discussion is corrected, and disrupted ad-
jacency turns are avoided. In Fig. 5, we present an example of a DATree
constructed by DiLTA on the right in comparison with its original un-
structured text on the left. In contrast to the unstructured view, a DA-
Tree provides a clear visualization. In the tree, each branch represents a
conversation, and the nodes under the branches represent messages in
the conversations. It is apparent that this particular discussion en-
compasses multiple conversations, some of which have elaborate in-
teractional coherence patterns.

4. Evaluation

We evaluate the effectiveness of various components of our DiLTA

Fig. 2. Illustration of DSA process (left) and cluster-based segmentation (right).
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Fig. 3. The proposed discussion segmentation algorithm.

Fig. 4. Residual match algorithm used in TBL-RM.
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as well as its overall effectiveness in two experiments. Experiments 1
and 2 assessed the effectiveness of the two computational components
of the system in comparison with the existing methods. To assess the
discussion representation improvements attributable to the system, we
empirically evaluated the accuracy of social network centrality in
Experiment 3.

4.1. Dataset

One of the challenges in evaluation is to find the “gold standard” of
the internal structure of online discussions. Any post analysis, whether
it is manual or automatic, can recover only the original structure as
much as possible. To assess the true effectiveness of DiLTA, we re-
cruited 80 participants to join group discussions using a GSS developed
by Li, Zhang, and Cao [62]. All participants were graduate students of a
business school. They were divided into 20 groups, and each group was
composed of four discussants. We chose a general discussion topic: how
to address an overproduction problem for a tea bag manufacturer. This
thread topic had been used in previous GSS research [62]. The subjects
were told to discuss solutions to the overproduction problem and to
reach a business decision in 30min.

The system is designed in a way that a user is required to specify the
purpose of his or her message before it is sent to the system. The
message can be either a new topic (primitive message) or a response to
a previous message (derivative message), where the antecedent mes-
sage must be specified. Such a reply-to relationship represents the logic
behind their discussions. Although such a feature exists with most web
forums, users are not forced to specify the purpose of their message, and
the gold standard can be missing [4,7,27,63]. All subjects were given a
brief training session to ensure that they knew how to use the system.
We used these user-generated reply-to relationship tags as the “gold
standard.” We collected a total of 20 discussion threads. The longest
thread contained 71 messages, and the shortest contained 22 messages.
The average length was 42. This dataset with the gold standard was

used in the ensuing experiments.

4.2. Experiment 1: conversation disentanglement

In the first group of experiments, we evaluated the effectiveness of
the two computational components. Experiment 1 focused on evalu-
ating DSA, the conversation disentanglement component of DiLTA. The
outputs of DSA phase are the primitive message and discussion af-
filiation variables, which are used as input for the coherence analysis.

4.2.1. Benchmarks
Most existing methods of conversation disentanglement are de-

scribed in the computer science literature. They apply topic clustering
to compute the similarity between messages. Some use additional lin-
guistic features during clustering. Choi [64] performed segmentation
with a bag-of-words and clustering based on the Euclidean distance
between messages. Wang and Oard [50] also applied a bag-of-words
and single-pass clustering. However, they incorporated information
regarding the author, temporal, and conversational contexts (e.g.,
posting author information, time between messages, and direct ad-
dress). Shen, Yang, Sun, and Chen [63] used bag-of-words coupled with
additional linguistic features and messages weighted by time as input
for a single-pass clustering algorithm. Adams and Martell [33] added
hypernym information and a message distance penalty as well as direct
address information. Elsner and Charniak [26] performed disentangle-
ment using word repetition, discourse-based features, time windows,
and direct address as input for a maximum entropy algorithm. For all
comparison methods, the parameters were tuned retrospectively to
yield the best possible results. Consistent with prior work, microlevel
precision, recall, and F-measure were used as our performance mea-
sures [63]. Table 2 summarizes the features used in five benchmark
systems.

To test the performance of our DSA component, we compared it
against the abovementioned disentanglement methods. We used

Fig. 5. An example of original discussion text and DATree with internal structure.
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benchmark source code when available [26]; otherwise, the same
method was implemented. Consistent with all these studies, we used
recall, precision, and F-measure as our performance metrics.

4.2.2. Results
Table 3 shows the experimental results. DSA outperformed all the

five comparison methods in terms of F-measure by a wide margin. It
also attained the highest recall rate, suggesting that it was able to
identify more of the conversations appearing in the discussion threads
than other methods. This was largely attributable to DSA’s emphasis on
identifying primitive messages (i.e., conversation beginnings). The
analysis revealed that DSA correctly identified approximately 70% of
the primitive messages, whereas comparison methods typically de-
tected only 50% of the primitives. DSA was also more accurate at
identifying marginal messages. Another factor was that the RCS mea-
sures included only terms with noun or verb POS to compute the si-
milarity between messages, whereas the comparison methods did not
incorporate POS information. While methods such as those suggested
by Adams and Martell [33] and Elsner and Charniak [26] also yielded
good recall rates, these methods had low precision. Conversely, the
method developed by Wang and Oard [50] had good precision but low
recall, which means that it was able to accurately associate messages
with the conversations identified but failed to detect many of the
conversations.

Paired t-tests were conducted to evaluate DSA against the compar-
ison methods. The tests were performed on the macrolevel F-measures
for 20 discussion threads (i.e., n= 20). DSA significantly outperformed
all the five comparison methods (all p values< 0.001). The results
underscore the effectiveness of the primitive message detection-or-
iented DSA method as a viable method for conversation disentangle-
ment.

4.3. Experiment 2: coherence analysis

In Experiment 2, we evaluated the effectiveness of the coherence
analysis component of DiLTA: TBL-RM.

4.3.1. Benchmarks
Because automatic machine learning algorithms are affected by two

factors—feature and learning algorithms—we conducted three groups
of experiments to analyze the utility of TBL-RM.

In the first group, we compared the feature selection utility of TBL-
RM. Specifically, we compared system, linguistic, and discussion logic

features in conjunction against the use of only a subset of the feature
categories. We tested whether the use of all three feature categories in
unison would outperform the use of a subset of the categories. During
this group of comparisons, the TBL classifier with a residual match was
used as the learning algorithm. Precision, recall, and F-measure were
used as our performance measures. Note that in this classification
problem, we were interested only in those message pairs that were
classified as having a reply-to relationship. While the number of pairs
that were classified as having no reply-to relationships was much
higher, including these instances in the performance evaluation would
have artificially inflated precision and recall rates for all experimental
settings. Thus, our precision and recall metrics were based only on
correctly classified reply-to relationships. It is important to note that the
gold standard included one message as the antecedent (i.e., primitive)
message for each new posting. In other words, the total number of
reply-to relationships was fixed and was equal to one less than the total
number of messages in the discussion thread. We applied this suppo-
sition in the TBL-RM classifier. Hence, the total number of identified
reply-to relationships was always equal to the total number of reply-to
relationships; this results in equivalent values for precision and recall.

In the second group, we evaluated the learning algorithm utility of
TBL-RM by comparing with five other machine learning algorithms:
J48, LibSVM, Logistic Regression, Naive Bayes, and Random Forest. We
fed the algorithms with four settings of features: system, system+
linguistic, system+discussion logic, and a full feature set with
system+ linguistic+ discussion logic. Discussion logic feature is the
output from the DSA component.

In the third group, we evaluated the proposed TBL-RM learning
method against the existing techniques reviewed in Table 1: manual,
linkage, heuristic, and simple classification (without discussion logic
feature). All the benchmark methods have been used in previous stu-
dies. The heuristic-based benchmark is chosen because it is adopted in
[27]. This method relied on three linguistic features derived from the
message body: direct address, lexical similarity, and residual match.
The direct address match identified coherence relationships on the basis
of references to screen names. The Xsimilarity tool was used to compute
lexical similarity between every two terms and then obtain the simi-
larity score between messages using VSM. A naive linkage-based re-
sidual match rule was applied to the remaining messages [27,43]. The
classification-based method used linguistic and system features [7]. It
represented the coherence analysis task as a binary classification pro-
blem (i.e., to determine whether two messages constitute a reply-to
relationship). We extracted four types of features from the message
pairs: “time_gap” and “dist” are the intervals of time and distance be-
tween message pairs, respectively; “repeatNoun” is the number of re-
peated nouns between message pairs; and “viewer_timeGap” is the
number of message pairs from the same author who had a time interval
of less than 5 s.

Coherence analysis is a challenging problem. Group discussion
participants often struggle to manually identify coherence relationships
[12]. To provide an impression of task difficulty, manually annotated
coherence analysis results are often included as an upper bound [50].
Five independent annotators with experience in social media analytics
and discourse analysis were asked to annotate the 20 discussion threads
with coherence relationships. The macro F-measure, precision, and
recall (i.e., average of the five annotators across the 20 discussion

Table 2
Summary of five benchmark systems with DSA.

Benchmarks Features

Adams and Martell [33] TF-IDF, Time-distance penalization, Hypernym augmentation, Nickname augmentation, and Thread extraction
Shen, Yang, Sun, and Chen [56] Bag-of-terms, TF-IDF, Sentence type, and Personal Pronouns.
Elsner and Charniak [26] Time, Speaker, Citation, Cue words, Question, Repetition, and Technical jargon
Choi [63] Similarity
Wang and Oard [50] Bag-of-terms, TF-IDF, Social and temporal contexts, and constructing expanded messages

Table 3
Results for conversation disentanglement experiment.

Technique F-Measure Precision Recall

DSA 0.617* 0.596 0.671
Adams and Martell [33] 0.423 0.332 0.663
Shen, Yang, Sun and Chen [63] 0.422 0.421 0.452
Elsner and Charniak [26] 0.329 0.252 0.535
Choi [64] 0.284 0.344 0.266
Wang and Oard [50] 0.262 0.699 0.186

* Significantly outperformed comparison methods, with all p values<
0.001.
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threads) were included in the experimental results. As with TBL-RM,
the heuristic, linkage, and manual methods also assumed that each
message had only a single parent message [27]; hence, their precision
and recall values were equivalent. In contrast, the comparison classi-
fication-based method did not make this assumption [7].

The classification is a skewed dataset where the number of negative
examples (non-reply-to relationships) is much higher than that of po-
sitive examples (reply-to relationships). We are interested only in po-
sitive precision, or true-positive rate. Thus, our precision and recall
metrics are based on correctly classified reply-to relationships and are
measured as follows:

=
−

− −
precision

Number of Correctly Identified Reply to Relationships
Total Number of System identified reply to relationships

=
−

− −
recall

Number of Correctly Identified Reply to Relationships
Total Number of Expert identified Reply to Relationships

During the coherence analysis step, each message is assigned to
another message to form a pair that comprises a reply-to relationship,
except for the first message. Experts also assign each message to an-
other message to form a pair that comprises a reply-to relationship,
except for the first message. Thus, the two denominator values, the total
number of system-identified reply-to relationships equals the total
number of expert-identified reply-to relationships, which equals the
total number of message minus one. Thus, precision and recall mea-
sures in this experiment have equal values.

4.3.2. Results
The experimental results are shown in Tables 4–6. When comparing

feature categories, both linguistic and discussion logic features im-
proved performance over the use of only system features. For both,
paired t-test p values were significant (< 0.001, n=20). Using all three
feature categories also outperformed the use of system+ linguistic and
system+discussion logic features (both p values< 0.001). Overall, the
results lend credence to the notion that linguistic and discussion logic
features are important for bridging the coherence gap resulting from
the dichotomy between system features supported by existing com-
munication technologies and discourse practices used in group discus-
sion.

We conducted ablation test to compare five other machine learning
techniques using different feature sets, as presented in Table 5. Fo-
cusing on machine learning algorithms alone, TBL-RM performed
consistently better than all other learning algorithms, achieving 0.481
in F-measure. Among the benchmark algorithms, the best performance
was achieved with the Naive Bayes algorithm when all three types of
feature are used: system+ linguistic+ discussion logic, which
achieved an F-measure of 0.315. Looking at feature set differences, we
found that when paired with system feature, discussion feature alone or
linguistic feature alone did not improve the performance much over
system feature, it sometimes even decreased the performance when
inappropriate machine learning algorithms were used (J48, SVM, and
Random Forest).

The Naive Bayes and TBM-RM algorithms both achieved reasonable
performance when all three feature sets were considered. We observe
that the improvement from linguistic feature is even more obvious than
discussion logic feature (55.4% vs. 44.6% improvement, respectively, in
TBL-RM). We believe that although the proposed discussion logic fea-
ture is an important feature in improving restructuring interrupted
online discussions, one cannot ignore linguistic features. The best per-
formance is achieved when all three feature sets are considered
(186.3% improvement over system feature alone with TBL-RM).

When all three existing techniques were compared, TBL-RM out-
performed the comparison heuristic, linkage, and classification
methods by a wide margin. Paired t-test results were significant (all p
values< 0.001). The poor performance of the linkage method was at-
tributable to disrupted turn adjacency; over 80% of the time, the ad-
jacent messages in the discussion thread had no reply-to relationship
with one another. Consequently, naive linkage yielded poor results. The
comparison classification method attained good precision but poor re-
call. This was attributable to limitations in the coverage provided by the
classifier’s rules, which were mostly based on system features related to
message proximity and time gaps. The limited use of linguistic features
and lack of discussion logic attributes contributed to the classification
method’s low recall. While the heuristic method performed better, its
performance was adversely affected by the use of discourse pattern-
related assumptions that did not hold in this context. The method’s
overreliance on direct address and coreference-based interaction cues
was problematic, because these items were seldom used in the test bed
group discussions. As expected, manual identification outperformed all
the automated methods. However, the performance gain over TBL-RM
was not significant (p value=0.519). Given the infeasibility of manual
identification over large volumes of data, the relatively equitable per-
formance of TBL-RM suggests that it may constitute a viable automated
alternative. Overall, the results demonstrate the efficacy of the pro-
posed coherence analysis method, which combines system, linguistic,
and discussion logic features with a classification method and RM.

4.4. Experiment 3: improving accuracy of social network centrality
measures

After showing the effectiveness of DiLTA, our second experiment
focused on the usefulness of DiLTA. While we believe that such auto-
matic online discussion analysis can be useful in many ways, one of
them is in social network analysis. According to a recent Gartner report,
the organizational use of social network analysis is on the rise. From an
organizational discourse perspective, important applications of social
network analysis include understanding power dynamics and identi-
fying experts and influencers [65]. Social networks derived from con-
versations can illuminate participant roles using measures such as de-
gree centrality, betweenness, and closeness [27]. However,
computation of these measures requires precise values for in-degree:
the number of message responses to a participant [45,46]. Otherwise,
participant roles can be distorted—either exaggerated for some or un-
derstated for others [27].

Inaccurate discussion structure can distort representations of parti-
cipants’ roles in online group discussions. The differences between ac-
tual and projected social network centrality measures can shed light on
the level of distortion [27,46]. Three commonly used measures are
degree centrality, closeness centrality, and betweenness centrality.
Degree centrality is the total number of outlinks (sent messages) and
inlinks (received/reply-to messages) associated with a discussant; it is a
measure of a discussant’s level of participation and interaction within a
discussion thread [46]. Closeness centrality is a measure of the level of
interaction between participants within a group, with greater interac-
tion between discussants indicating greater closeness. Betweenness
centrality is an important measure of how critical an individual is for
the flow of communication between other discussants in a conversation
[27]. For a given discussant, it is computed as the proportion of the

Table 4
Results for coherence analysis experiment: comparing feature sets.

Comparison F-Measure Precision Recall

TBL-RM Features
System 0.168 0.168 0.168
System+Linguistic 0.261+ 0.261 0.261
System+Discussion Logic 0.243+ 0.243 0.243
System+Linguistic+Discussion Logic 0.481* 0.481 0.481

* Significantly outperformed all other feature category combinations, with
all p values< 0.001.

+ Significantly outperformed the use of only system features, with both p
values< 0.001.
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shortest paths between discussants in the network that includes this
discussant. We examined the mean absolute percentage error in degree,
closeness, and betweenness centrality for the DiLTA coherence analysis
module and the comparison heuristic, linkage, and classification
methods. The values were computed across all 80 participants in the 20
discussion test beds.

Table 7 shows the experimental results. The conversation disen-
tanglement method in DiLTA had the smallest mean absolute percen-
tage errors for all three social network centrality measures, with error
percentages of only 8.5% and 5.2% for degree and closeness, respec-
tively. The DSA error rates were nearly two to three times better than
those of the comparison methods. The differences were statistically
significant (with all p values< 0.001). Among the comparison
methods, heuristic and linkage methods had error rates of 13%–35%,
respectively, while the classification method had error values between
47% and 62%. Table 8 presents the gold standard social network and
degree centrality values (i.e., sum of in/out degree for each

participant), along with those generated by the TBL-RM, heuristic, and
linkage methods, for one of the discussions in the test bed. The DSA
degree values for the four discussants were almost identical to the gold
standard. In contrast, the heuristic method exaggerated the degree
centrality of discussant D. Similarly, because of its bias toward dis-
cussants with greater posting frequency within discussions [27], the
linkage method inflated the value for discussant A. In the case of the
latter method, this was attributable to its lower coherence analysis
performance. Though not depicted in the figure, this also caused these
two discussants’ closeness and betweenness values to be overly pro-
nounced in their respective methods’ networks, thereby over-
emphasizing their centrality and perceived importance (see Fig. 6).

5. Case study on healthcare discussions

Our experimental results showed the utility of each individual
component of DiLTA, compared with existing benchmark methods, in
online discussion generated by GSS. In this section, we conducted a case
study on healthcare discussion to illustrate the usefulness of DiLTA.

5.1. Dataset

The healthcare dataset is crawled from two popular online forums:
http://bbs.tnbz.com/ and http://www.sunofus.com/. The first one is an
online forum for patients with diabetes and the second one is for pa-
tients with depression. We randomly picked nine threads each with
around 100–200 messages. Table 9 provides an overview of the data-
sets, including the number of messages, the number of participants, and
the number of quotations. The total dataset included over 1000 mes-
sages associated with 476 participants.

Unlike the chat room dataset used in Section 4, Web forums lack a
gold standard of reply-to structure. Consistent with prior studies [27],
all messages in the test bed were labeled by two independent human
annotators with experience in discourse analysis. The annotators

Table 5
Results for coherence analysis experiment: comparing learning algorithms.

Learning Algorithm Measures Features

System System+Linguistic System+Discussion Logic System+Linguistic+Discussion Logic

J48 Precision 0.163 0.163 0.163 0.163
Recall 0.163 0.163 0.163 0.163
F-measure 0.163 0.163 0.163 0.163

LibSVM Precision 0.163 0.163 0.163 0.143
Recall 0.163 0.163 0.163 0.119
F-measure 0.163 0.163 0.163 0.130

Logistics Precision 0.163 0.099 0.163 0.231
Recall 0.163 0.105 0.163 0.214
F-measure 0.163 0.102 0.163 0.222

Naive Bayes Precision 0.163 0.271 0.123 0.251
Recall 0.163 0.350 0.138 0.422
F-measure 0.163 0.306 0.130 0.315

Random Forest Precision 0.163 0.069 0.138 0.195
Recall 0.163 0.071 0.114 0.172
F-measure 0.163 0.070 0.125 0.183

TBL-RM Precision 0.168 0.261 0.243 0.481
Recall 0.168 0.261 0.243 0.481
F-measure 0.168 0.261 0.243 0.481

Table 6
Results for coherence analysis experiment: comparison with existing techni-
ques.

Technique F-Measure Precision Recall

Heuristic 0.283 0.283 0.283
Linkage 0.168 0.168 0.168
Simple Classification 0.061 0.276 0.035
Manual Identification 0.521++ 0.521 0.521
TBL-RM 0.481* 0.481 0.481

+Significantly outperformed the use of only system features, with both p va-
lues< 0.001.
* Significantly outperformed all other feature category combinations, with

all p values< 0.001.
++ Did not significantly outperform TBL-RM; p value= 0.519.

Table 7
Mean absolute percentage error for social network centrality measures.

Method Degree Centrality Closeness Centrality Betweenness Centrality

DiLTA 0.085* 0.052* 0.208*

Heuristic 0.187 0.142 0.356
Linkage 0.179 0.136 0.339
Classification 0.619 0.627 0.475

* Significantly outperformed comparison methods, with all p values<
0.001.

Table 8
Degree centrality values for example group discussion.

Discussant/Method Gold Standard DiLTA-DSA Heuristic Linkage

Discussant A 48 48 39 67
Discussant B 26 28 20 16
Discussant C 9 8 10 10
Discussant D 27 26 41 17
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labeled each thread message with respect to primitive status and reply-
to relationships. The annotators first underwent several rounds of
training on messages from web forums that were not part of the test
bed. Then, each of them independently annotated the messages in the
test bed, thus attaining a Cohen’s Kappa value of over 75% for inter-
annotator agreement. All disagreements were solved by annotators’
discussion. The annotated dataset was used as the gold standard.

5.2. Performance validation

We respectively validated the performance of the conversation
disentanglement component and coherence analysis component of
DiLTA on a healthcare domain test bed in comparison with three
benchmark methods: Linkage method, Classification method, and
Heuristic method (shown in Table 10). The linkage method performed
the worst because it used only quotations and assumed that all residual
messages (i.e., ones not containing any quotations) were replying to the
previous message. Classification method and heuristic method per-
formed similar in terms of final coherence analysis result. However, the
classification method is able to identify more corrected conversation
appearing in the discussion thread, thereby showing a higher recall
rate. However, the poor precision shows that it is not able to associate
messages with the correct subtopic, thus losing the logic in discussion.
Although these test beds come from different channels and domains,
our proposed framework performances are consistent with those of
Experiment 1a and Experiment 1b in terms of F-measure, precision, and
recall on each thread of the test bed. Because the total number of
identified reply-to relationships was always equal to the total number of
reply-to relationships, it resulted in equivalent values for precision,
recall, and F-measure. We observed that system features such as quo-
tation and timestamp are more effective on web forum datasets than on

a chat room dataset.

5.3. DATree comparison

To further demonstrate the usefulness of DATree, Fig. 7 compares
the gold standard tree representation (top-left chart) with DATree
generated by DiLTA (top-middle chart) and three benchmark methods
(top-right and bottom charts), using one of the discussions in our case
study. From the shape of the tree, it is obvious that DATree generated
by DiLTA most closely resembles the gold standard in terms of link
structure between nodes. The gold standard and DiLTA grouped the
messages in a similar way. It is clear that there are four major issues in
discussion (with primitive message numbers 0, 25, 40, and 76). They
contain more layers and sketch the discussion process in detail. One can
deem these issues as the main discussion topics. The linkage method
identifies only one issue. It distorts the relationships among issues and
provides an incorrect holistic view of the discussion. Conversely, the
classification method generates many single leaf nodes, thus resulting
in a wide tree with many branches. However, it fails to associate the
message nodes to the correct branch (or primitive message). The tree
structure explains the high recall and low precision of the classification
method. The heuristic method generates less than desired branches in
comparison to the gold standard. It is clear that DiLTA-based DATree
best resembles the gold standard tree, showing the superior perfor-
mance by capturing discussion logic in our framework.

In addition to the overall conversation structure, inaccurate co-
herence relationships can distort representations of participants’ roles
in online group discussions. In addition to degree centrality, closeness
centrality, and betweenness centrality, another widely used measure is
PageRank score [66], which aims to allow the propagation of influence
along the network of nodes instead of simply counting the number of

Fig. 6. Social network for example group discussion.

Table 9
Overview of healthcare dataset.

Number of Messages Number of Participants Number of Quotations http

Health1 123 57 66 http://bbs.tnbz.com/thread-346598-1-1.html
Health2 204 99 101 http://bbs.tnbz.com/thread-310949-1-1.html
Health3 56 21 39 http://bbs.tnbz.com/thread-743810-1-1.html
Health4 100 49 63 http://bbs.tnbz.com/thread-349243-1-1.html
Health5 136 77 60 http://bbs.tnbz.com/thread-327255-1-1.html
Health6 129 91 61 http://bbs.tnbz.com/thread-327255-1-1.html
Health7 105 48 52 http://bbs.tnbz.com/thread-599203-1-1.html
Health8 99 17 48 http://www.sunofus.com/bbs/thread-2105937-1-1.html
Health9 94 17 58 http://www.sunofus.com/bbs/forum.php?mod=viewthread&tid=94139&page=1
Total 1046 476
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Table 10
DiLTA performance validation on healthcare domain dataset.

Component of DiLTA DiLTA Linkage Method

F-measure Precision Recall F-measure Precision Recall

Conversation Disentanglement 0.644 0.594 0.728 0.189 1 0.111
Coherence Analysis 0.792 0.792 0.792 0.620 0.620 0.620

Component of DiLTA Classification Heuristic

F-measure Precision Recall F-measure Precision Recall

Conversation Disentanglement 0.226 0.169 0.429 0.238 0.363 0.279
Coherence Analysis 0.590 0.590 0.590 0.617 0.617 0.617

Fig. 7. DATree presentation for example discussion thread from healthcare domain forum.

Table 11
Wilcoxon signed-rank test for social network PageRank score measure.

DiLTA vs. Gold Standard Linkage Method vs. Gold Standard Classification vs. Gold Standard Heuristic vs. Gold Standard

Z −0.443a −8.000 a −1.328 a −2.118 a

Asymp. Sig. (2-tailed) 0.658++ 0.000* 0.184+ 0.034*

a Based on negative rank.
* Significantly different from the gold standard; p value<0.05.
+ Significantly different from the gold standard; p value= 0.184.
++ Significantly different from the gold standard; p value= 0.658.
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other nodes pointing at the current node. We used the Wilcoxon signed-
rank test on the PageRank score measure to compare the DiLTA and the
linkage methods.

Table 11 shows the Wilcoxon signed-rank test results. The differ-
ences between DiLTA and the gold standard were not significant (with p
value=0.658). Surprisingly, the differences between the classification
method and the gold standard were not significant either (with p
value=0.184). However, the other two benchmark methods, by con-
trast, were significantly different from the gold standard on the health
domain test bed. Consistent with Section 4, DiLTA can improve the
accuracy of the PageRank score in measuring influence in social net-
work.

5.4. Social network representation

Fig. 8 shows the gold standard social network in comparison with
the results generated by DiLTA and the three benchmark methods. Each
node represents a user. The node sizes are proportional to the PageRank
score, and the link thickness represents the reply-to degree weight. It is
apparent that DiLTA most closely resembles the gold standard in terms
of node sizes and links between nodes. Node 1 has the highest Pa-
geRank score, followed by nodes 26, 3, and 34. The linkage method,
conversely, tends to exaggerate the PageRank values of many nodes,
such as nodes 8, 9, 78, and 79. This is consistent with prior studies
[20,27,45,46], which have also observed that linkage methods inflate
PageRank scores. The classification method incorrectly picked nodes 3,
9, 54, 54, and 83 as more important nodes, while the PageRank scores
for nodes 26 and 34 were discounted. Similarly, the heuristic method
also amplified the importance of nodes 3, 9, 51, 54, 78, and 83, while
diminished the importance of nodes 26 and 34.

The results of the experiments show that DiLTA can reasonably
recover the true online discussion structure, especially when direct
referencing and quoting features are not available. The performance of
DiLTA is almost as good as that of human experts. Thus, it has great
potential to facilitate social science analysis. The output of DiLTA can
be represented by a DATree to lay out the structure of a discussion text
and further support online discourse analysis.

6. Conclusions

This work proposes a DiLTA framework to support the analytics of
online discussions. We attempt to connect social science and computer
science studies of online discussions by incorporating the spirit of ar-
gumentation models into automatic discussion analysis. The goal of our
approach is to recover the internal discussion logic to facilitate a more
advanced and pragmatic level of analysis. We recruited students to
participate in online discussions in which their true conversation in-
tention and coherence could be reported. By using this dataset, we
evaluated our approach in a series of experiments and demonstrated the
utility of each individual component in comparison to the existing
methods. Furthermore, the performance of the framework is validated
by using an online healthcare discussion dataset. The two datasets re-
present different styles of discussions. Social network analysis experi-
ments were performed to show that key discussants could be better
identified with DiLTA framework.

Our contributions are twofold. First, this research contributes to the
theory of argumentation models. The design and development of DiLTA
rely on extensions of Toulmin’s model as a strong theoretical founda-
tion. The findings provide evidence that argumentation models can be
generalized to various datasets. We further show that argumentation

Fig. 8. Social network of discussion thread from healthcare domain forum.
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theories such as Toulmin’s model indeed provide important cues in
discussion and lead to better understanding of conversation structure.
This research also provides a new possibility for theory development.
The use of automatic analytical system such as DiLTA can potentially
help social scientists to develop and validate new argumentation
models.

Second, this research contributes to technology development of
online discussion analysis. Compared to traditional automatic discus-
sion analysis, which focuses on system and linguistic features only, this
new method of textual analysis looks at intermessage semantics and
relationships. Several other innovative techniques are also introduced.
To detect the discussion logic features, a novel DSA algorithm is in-
troduced. The use of discussion logic features in TBL-RM is promising
for unstructured user-generated discussion texts in which system fea-
tures and linguistic features are less effective. The automatic tree-based
representation DATree demonstrates the advantage of turning un-
structured discussion text into a structured tree format, which greatly
helps decision makers to obtain valuable information from massive
user-generated discussion texts in an effective fashion.

The results of this research have further implications. From a user’s
perspective, the holistic hierarchical structure of discussions can help
decision analysis practitioners to quickly understand and grasp the
discussion content [67]. The DATree provides an appropriate level of
description for online group discussion. The methodology of creating
DATree visualization applies to other types of social media, such as
online user reviews, Twitter data, email, newsgroups, and forums.

From a group decision-making perspective, the goal of online group
discussion is to find a scientific and rational solution for decision pro-
blems [68,69]. Viewing group discussions as a DATree is potentially
useful for supporting group rational decision-making and helps a dis-
cussion supervisor to make appropriate interventions [65]. The inter-
pretation of a DATree offers clues to make interventions. Furthermore,
the relationship between these issues can help to sketch the procedure
of group reasoning and provide information regarding other decision
problems [19]. It has the potential for an in-depth analysis of success or
failure factors in an organization.

From an enterprise and organizational perspective, we can apply the
DiLTA technique to enterprise and organizational board discussions for
strategic and business decision problems. The output—the
DATree—conveying issue networking and individual behavior, pro-
vides a relationship among these issues in different discussions and
human contributions among issues. It can also evaluate the individual’s
level of expertise and support to identify trustworthy experts. Finally,
we can determine the discussant’s performance in a discussion ac-
cording to the individual’s behavior.

7. Limitations and future directions

Similar to all other studies on coherence analysis, this research has
some limitations because of resource constraints. First, although our
framework is generic, the current experiment was conducted on
Chinese group discussions. It will be interesting to apply the framework
in different languages and compare performance. Second, to generate
the gold standard for evaluation purposes, we relied on an experimental
dataset, where the true discussion structure can be recovered. Such a
gold standard cannot be achieved from random social media data.
However, it will be interesting to see the performance of the model on
other forms of social media data, such as Twitter and Facebook, as the
next step. Third, our discussion logic feature is derived based on two
simplified categories of messages: primitive and derivative messages. As
the first step in adopting Toulmin’s model, we believe that it shows the
power of using this feature. In the future, we plan to incorporate a more
complex version of Toulmin’s model, which will include four argument
elements: claim, data, backing, and rebuttal. It is not clear whether
using four argument elements will yield significant improvements over
the two argument categories. It is also worth noting that our Rsim

calculation can be optimized to reduce computational complexity as
illustrated by Sidorov et al. [56]. In our experiment, because Rsim was
used as one of the steps to perform subtopic segmentation, we did not
expand the paper on details of optimization. Furthermore, although this
research qualitatively illustrates the usefulness of structured discussion
text with tree-based representations, it will be interesting to further
study different forms of tree-based representation in the future.
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