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Abstract—Adverse drug events represent a key challenge in
public health, especially with respect to drug safety profiling and
drug surveillance. Drug-drug interactions represent one of the
most popular types of adverse drug events. Most computational
approaches to this problem have used different types of data,
such as drug chemical structure, information about protein
targets, side effects, pathways, etc to predict potential interactions
between drugs. In this work, we study the question of whether
using just genetic information about the drugs can provide
significant information about the potential safety profile for a
given drug. We propose a novel neural network model to predict
adverse drug events using only data about the protein sequence
and protein structure associated with the drug targets. We
compare the results with those from the state-of-the-art methods
on this problem. Our results show that the proposed method is
quite competitive, at times outperforming the state-of-the-art.

Index Terms—Drug safety, Drug-Drug Interaction (DDI), Neu-
ral Networks, Protein Similarity Network

I. INTRODUCTION

Given the increasing number of medications that are being
consumed concurrently by individuals, it is becoming more
and more important to know more about the drugs we take.
With this increased potential for polypharmacy, there is a cor-
responding increase in the chance for adverse events involving
medications. One key example of adverse drug events is the
problem of drug-drug interactions. The sheer number of people
taking more than one medication in a given day has made the
issue of drug-drug interactions a major public health problem.

Recent advances in biomedical research have generated
a large volume of drug-related data. To effectively handle
this enormous amount of data, many initiatives have been
introduced to help researchers make sense of the massive
data sets. As a result, various drug knowledge bases have
been constructed, for instance, Drug Bank, SIDER, PDB,
STITCH, SMILES, etc. These knowledge bases record various
types of information about drugs, including information about
genetic sequences, protein structures, drug side-effects, chem-
ical structures, drug indications, etc. Thus, several approaches
have been proffered to utilize the information from these
different sources to predict potential interactions between
drugs [9], [10], [14]–[16]. DrugBank is perhaps one of the

most credible databases of known DDIs [4]–[6], and contains
information on over 300,000 DDIs. However, the number of
drug-drug interactions is less than 1% of the total possible
drug pairs that exist in DrugBank. Basically, DDI’s are known
as the unwanted side effects resulting from the concurrent
consumption of two or more drugs [1]–[3]. When a doctor
prescribes several drugs simultaneously for a patient, this may
cause irreparable side effects. The effects of drugs on each
other may lead to other illnesses or even death. These side
effects are particularly noticeable in the elderly, or in persons
with challenging diseases, such as cancer patients, who take
many different drugs daily. Given the relevance of DDI’s in
an individual’s health, and to public health in general, there is
a critical need for more accurate and effective computational
methods for understanding DDIs and how to predict them.

In this work, we study the problem of DDI prediction from
the lens of genetic materials about the drugs. The paper is
organized as follows: In the next section, we briefly discuss
related work. Section III presents our methodology. Section
IV reports on our experiments and results. Discussions are
presented in Section V, and Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

Most existing approaches for DDI prediction are based
on different properties of the drug compound, such as its
chemical structure, side effects, drug-target relationship, and
many more. DDIs can be identified with in vivo models using
high-throughput screening [7]. However, the price of such
procedures is relatively high, and testing large numbers of drug
combinations is not practical [8]. To reduce the number of pos-
sible drug combinations, numerous computational approaches
have been proposed [9]–[16]. In some of these computational
approaches, drug-target networks are constructed, and DDIs
are detected by measuring the strength of network connections
[13], or by identifying drug pairs that share drug targets or
drug pathways, for instance, using the random walk algorithm
[14].

Some computational approaches have used the structural
similarity and side effect similarities of drug pairs. For ex-
ample, Gottlieb et al. proposed the Inferring Drug Interactions

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 B

io
in

fo
rm

at
ic

s a
nd

 B
io

m
ed

ic
in

e 
(B

IB
M

) |
 9

78
-1

-6
65

4-
01

26
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

B
IB

M
52

61
5.

20
21

.9
66

98
58

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 22,2022 at 20:48:48 UTC from IEEE Xplore.  Restrictions apply. 



3473

(INDI) method, which predicts novel DDIs from chemical and
side effect similarities of known DDIs [9]. Vilar et al. used
similarities of fingerprints, target genes, and side effects of
drug pairs [10], [11]. Cheng et al. constructed features from
the Simplified Molecular-Input Line-Entry System (SMILES)
data and side effect similarity of drug pairs and applied support
vector machines to predict DDIs [12]. Zhang et al. constructed
a network of drugs based on structural and side effect similari-
ties and applied a label propagation algorithm to identify DDIs
[13]. Recently, Ryu et al. proposed DeepDDI, a computational
framework that calculates structural similarity profiles (SSP)
of DDIs, reduces features using principal component analysis
(PCA), and feeds them to a feed-forward deep neural network
[16]. The platform generated 86 labeled pharmacological DDI
effects, so DeepDDI [19] is basically a multi-classification
(multi-label classification) model.

Vilar et al. developed a model to predict DDIs based on the
Interaction Profile Fingerprint (IPF) [10]. Quite simply, the in-
teraction probability matrix was computed by multiplying the
DDI matrix by the IPF matrix. Afterward, Lu et al. proposed
a computational framework by applying matrix perturbation,
based on the hypothesis that by randomly removing edges
from the DDI network, the eigenvectors of the adjacency
matrix of the network should not change significantly [17].
These two methods employ no other data about drugs, except
known DDIs.

More recently, a new family of similarity-driven methods
has followed the assumption that similar drugs should have al-
most similar interactions. Vilar et al. [18] presented a neighbor
recommender method by utilizing substructure similarity of
drugs. Relying on Vilar’s framework, Zhang et al. constructed
a weighted similarity network that is labeled based on inter-
action with each of the drugs [13] and applied an integrative
label propagation method using a random walk model on the
network to estimate potential DDIs. This prediction framework
only considered three types of similarities for predicting DDI
via label propagation, namely substructure-based, side effect-
based, and offside effect-based label propagation models [13].
Recently, some methods have also been proposed for adverse
event detection using signals from social media [25]–[27].

In this study, we develop a novel DDI prediction method
utilizing the protein sequence data from the DrugBank and
protein structure data from the Protein Data Bank. We cal-
culate different similarity measures to create the similarity
matrices for each feature attribute. Then, we use the generated
feature matrices to create a single network fusion to measure
the potential for interaction between two drugs. Final decision
is performed via the help of a neural network architecture
based on multilayer perceptrons. The main novelty of our
approach is the focus on only genetic materials (protein
sequence and protein structures) associated with the drug
targets in developing our prediction model. To our knowledge,
this is the first attempt at investigating potential DDI prediction
by utilizing only information about the protein sequence and
structure to generate the feature space fed to the neural
network.

III. METHODOLOGY

We developed a novel neural network model for the pre-
diction of DDIs. The key idea in our approach is the notion
that if two drugs have a similar pattern of similarity with other
drugs, they are likely to have a similar pattern of interacting
partners. To capture the patterns of similarity between drugs,
we use information about the protein sequences and protein
structures associated with the protein targets for a given drug.

Thus, we construct similarity matrices between drugs based
on the protein sequences and protein secondary structures and
combine these into one protein sequence-structure similarity
matrix using network fusion. Fig. 1 shows a schematic diagram
of the general proposed framework. To calculate the similarity
matrices we have used cosine distance, Levenshtein distance,
Jensen Shannon (JS) divergence, and Euclidean Distance as
the similarity measure between a pair of drugs.

A. Distance Matrices

To estimate the similarity between drugs, we compute dis-
tance measures (and sometimes similarity measures) between
drugs based on their protein sequences and protein structure.
We used four such measures as described below.

1) Cosine Similarity (CS): Cosine similarity metric finds
the normalized dot product of two vectors. By determining
the cosine similarity, we would effectively try to find the
cosine of the angle between the two objects, when represented
as vectors. The cosine of 0° is 1, and it is less than 1 for any
other angle. For two n-length vectors A and B, we have:

CS(A,B) =
A.B

‖A‖ ‖B‖
=

∑n
i=1 AiBi√∑n

i=1 A
2
i

∑n
i=1 B

2
i

(1)

2) Levenshtein Distance (L): The Levenshtein distance is
a string metric for measuring the difference between two
sequences. The Levenshtein distance between two strings a, b
(of lengths |a| and |b|, respectively) is given by La,b(|a|, |b|)

La,b(i, j) =


max(i, j) if min(i,j) = 0

min


L(i− 1, j) + 1

L(i, j − 1) + 1

L(i− 1, j − 1) + 1

otherwise

(2)
Essentially, La,b(i, j) is the distance between the first i char-
acter of a and the first j character of b.

3) Jensen Shannon (JS) divergence(JSD): The
Jensen–Shannon divergence is a method of measuring
the similarity between two probability distributions. Given
two distributions X and Y , the JS divergence is the average
KL divergence of X and Y from their mixture distribution,
M :

JS(X||Y ) =
1

2
D(X||M) +

1

2
D(Y ||M) (3)

where M = X+Y
2 . and D(X||M) is the KL divergence

between X and M .
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B. Protein Sequence and Structure Similarity Matrices

In our work, we use similarity matrices, rather than distance
matrices. Thus, for each distance measure, we convert the
values into similarity measurement.

Each protein structure could have multiple chains. More-
over, each drug active ingredient could have multiple protein
targets. Thus, we could compute the similarity between two
drugs (or drug active ingredients) based on the protein chains
associated with the respective protein targets for the drugs.
For each similarity measure, we record 1) Minimum Similarity
2) Maximum Similarity 3) Average Similarity(AS) 4) Expo-
nential Weighted Average Similarity(EWAS)

Here, we discuss briefly the protein sequence and protein
structure similarity matrices used in this work.

1) Protein Sequence Similarity Matrices: In this approach,
the protein Sequence information is used directly to com-
pute the similarity matrix. We can compute the Levenshtein
distance directly. To compute the cosine, and JS divergence,
we will first compute the k-mer profiles for each sequence,
and then compute the similarity measure based on the profile.
To generate the k-mer profiles, we use the suffix array data
structure [22].

2) Protein Structure Similarity Matrices: For protein struc-
ture, we first covert the protein 3D structure into a protein
string (pString) representation following [24]. The resulting
pString is then treated like a sequence of information for
structure. The only difference with the protein sequence is that
each protein structure could have multiple chains(sequences)
of information.

We generalized the similarity calculation which will repre-
sent the similarity values between two drug active ingredients
(DAIs). We already know that each DAI could have multiple
protein targets. Also, though each protein target has just one
sequence, it could have multiple chains for its 3D structure.
Thus, for a given DAI, we capture its protein structure infor-
mation as follows:

[R1
1, R

1
2...R

1
k1
, R2

1, R
2
2...R

2
k2
...RM

1 , RM
2 , ...RM

kM
]

where R′is represent the the protein targets, M denotes the
total number of protein targets in the DAI, and k1, k2...kM
represent the number of chains on each protein target.

Now, we can use this generalized DAI representation for
similarity calculation between two DAI’s. If two DAI’s have
N and M protein targets and their number of chains are
k1, k2, ...kN and L1, L2, ...LM respectively, then the possible
number of comparisons would be:

Pc = k1L1 + k1L2 + ...k2L1 + ...+ kMLN (4)

After Pc comparisons at the chain level, we will obtain a
vector of similarity values for the two DAI’s. We use the vector
to calculate the minimum, maximum, average and exponential
weighted average similarity between the two DAI’s. The
exponential weighted average is computed as follows:

wi =
esi∑
i (e

si)
(5)

Here wi represents weights and si represents a similarity
value.

C. Protein Sequence-Structure Similarity Network

Using the protein sequence, and protein structure similarity
matrices, we generate protein sequence based,and protein
structured based similarity networks using similarity network
fusion approach. Each of these networks can be used inde-
pendently to analyze potential DDIs between drugs or drug
active ingredients. To improve the overall performance, we
then integrate the sequence-based similarity network with the
protein-based network into one overall similarity network.
The result is the protein sequence-structure similarity network
(PS3N). Our network integration is based on the technique of
Similarity Network Fusion(SNF) [21]. SNF is an approach for
combining multiple data sources into a single graph represent-
ing sample relationships. The k-nearest neighbors approach
is used in the similarity network construction and fusion
process to down-weight weaker associations between samples.
However, weak relationships that are consistent across data
sources are retained during the fusion process. The generated
integrated network forms the basis for our analysis of adverse
drug events, such as drug-drug interactions.

D. Neural Network Model

The model we propose for our problem is entirely reliant
on the datasets we’re working with. That means the neural
network’s performance will be influenced by the number of
medications used in the dataset. In our neural network model,
we used no more than four hidden layers. We use Rectified
Linear activation function (ReLU) as the activation function
where the dropout rate for each layer would vary from 0.3
to 0.5. Each of the hidden layers is followed by a dropout
layer to avoid over-fitting problems during the training of the
model. The output of each neuron in a layer is a nonlinear
function f of all nodes in the previous layer. f is the ReLU,
which is defined as the positive part of its arguments f(x) =
x∗ = max{x, 0} The final output layer is calculated using the
sigmoid function: Sigmoid(x) = 1

1+e−x

For each layer, we used Xavier weight initialization, batch
size of 100, and 20 - 50 epochs, with binary cross-entropy
loss and stochastic gradient descent (SGD) for optimization.
The momentum parameter was set at 0.9.

E. Performance Evaluation

To evaluate the performance of the proposed method, we
compared it with machine learning approaches such as KNN
(K Nearest Neighbor), RF (Random Forest), Logistic Re-
gression, LDA (Linear Discriminant Analysis), and Support
Vector Machine. We also compared our results with state
of the art methods proposed in [20], [10], [13], [23]. We
evaluated the competitiveness of our models using different
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Fig. 1. Proposed Protein Sequence-Structure Similarity Network (PS3N) model for predicting adverse drug events. Using the method of Similarity Network
Fusion (SNF) we create a single N ×N fusion matrix for N drugs. From the fusion matrix, we compute the feature vectors for each pair of drugs. In this
way we will have possible

(N
2

)
rows, and each row will have N columns as features. These feature vectors are then fed into a multi-layer perceptron model.

For protein sequence similarity network, the number of hidden layers would reduce to 3 since we have less number of drugs.

performance metrics such as Precision, Recall, F1, Area under
Curve (AUC), and AUPR.

We note that if the interaction between two drugs is assigned
to zero, it simply implies that no evidence of their interaction
has been found yet. The two may still interact, but the features
we have we have used so far are not able to detect that.

IV. EXPERIMENTS & RESULTS

For our training experiment, we split each dataset into train-
ing, validation,and test sets according to a 70%− 10%− 20%
random split. For each dataset, networks were trained on the
training set for a total of 100 epochs with a batch size of 100
for the proposed neural network method.

A. DataSets

In this work, we use two different protein datasets of which
one is the protein sequence data with a relationship with drugs.
This sequence dataset is extracted from the DrugBank. The
second is the protein structure dataset retrieved from RCSB
Protein Data Bank (https://www.rcsb.org). Protein chains are
extracted from each PDB file using biopython libraries. We
combined these for a dataset of 905 drugs (active ingredients)
in DrugBank with information on both protein structure and
protein sequences. We also evaluated our methods using the
DS1 and DS2 datasets reported in [20].

B. Results

First, we evaluated our model on the single feature matrices
to identify the contribution of specific features to the perfor-
mance of the model. We used the average and exponential
weighted average similarity measures to generate the similarity
matrices. Table I shows the performance of the proposed
model using protein sequences. Table II shows results using
protein structure.

We then compared our model performance with other state-
of-the-art methods using the datasets from Drug Bank and

TABLE I
PERFORMANCE OF PS3N USING SIMILARITY MATRICES BASED ON

PROTEIN SEQUENCES

Feature name Precision Recall F-measure AUC Accuracy
L AS 0.9199 0.9419 0.9308 0.9673 0.9081
JSD AS 0.8837 0.8667 0.8751 0.9181 0.8377
CS AS 0.8799 0.9093 0.8943 0.9315 0.8590
L EWAS 0.9499 0.9638 0.9568 0.9832 0.9429
JSD EWAS 0.9406 0.8835 0.9112 0.9559 0.8870
CS EWAS 0.9523 0.9632 0.9578 0.9833 0.9443

*L = Levenshtein, JSD = JS Divergence, CS = Cosine, AS = Average
Similarity, EWAS = Exponential Weighted Average Similarity

TABLE II
PERFORMANCE OF PS3N USING SIMILARITY MATRICES BASED ON

PROTEIN STRUCTURE.

Feature name Precision Recall F-measure AUC Accuracy
JSD AS 0.8796 0.9279 0.90313 0.9171 0.8564
CS AS 0.9037 0.9469 0.9248 0.9499 0.8889
JSD EWAS 0.9762 0.9650 0.9706 0.9895 0.9578
CS EWAS 0.9743 0.9738 0.9741 0.9910 0.9627

*L = Levenshtein, JSD = JS Divergence, CS = Cosine, AS = Average
Similarity, EWAS = Exponential Weighted Average Similarity

Protein Data Bank. The constructed protein sequence and
structure similarity matrices from the datasets we Showed
proved a clear performance improvement. Table III shows that
our PS3N outperforms the state-of-the-art methods. We also
use datasets from [20] to evaluate the competitiveness with
other state-of-the-art. However, the Table showed generally
improved results for all learning models and the impact of
data imbalance is evident, especially considering the recall
and F-measures.

In Table IV and V we compare our results with the existing
state-of-the-art algorithms and found significant improvements
in terms of AUC, Precision, and Recall. We considered DS1
and DS2 datasets from [20] to compare the performance
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TABLE III
RESULTS USING COMBINED PROTEIN SEQUENCE AND PROTEIN

STRUCTURE SIMILARITY MATRICES.

Method Precision Recall F-measure AUC Accuracy
PS3N 0.9800 0.9818 0.9809 0.9946 0.9725
RF 0.7812 0.7241 0.7516 0.8089 0.8354
SVM 0.5507 0.2076 0.3015 0.5711 0.7320
LR 0.5169 0.1586 0.2427 0.5506 0.7243
LDA 0.5302 0.1740 0.2620 0.5572 0.7269
KNN 0.5470 0.6196 0.5810 0.7107 0.7510
Decision Tree 0.7134 0.7008 0.7071 0.7961 0.8382
NDD 0.5646 0.1927 0.2874 0.7366 0.7311

of existing methodologies. From the two datasets, we could
generate the protein sequence and structure metrics for a
subset of drugs. We used the newly generated feature space in
our model to check the performance and showed significant
improvement in both cases. From Table IV, we can see that the
PS3N showed better performance when compared to the other
methods. However, it showed similar results on the datasets
based on sequence, structure, or both information. This also
holds in Table V which was created from the DS2 dataset.

C. Impact of algorithmic parameters

Table VI shows the impact of different hyperparameters
on the performance of the proposed model. From the table,
Adam Optimizer with a learning rate of 0.01 produced the
best overall result. SGD Optimizer for learning rate 0.05, 0.01
and 0.10 showed almost similar accuracy level as we got for
Adam optimizer. In our proposed neural network model, the
number of hidden layers will vary based on the number of
drug active ingredients (DAI’s) on the datasets. Normally, for
protein sequence dataset, it will not more than 4. For Protein
structure or the combination of both, it will be between 3 to
5.

V. DISCUSSION

The main objective of this work is to propose a new
computational model for DDI prediction utilizing the genetic
information about drug protein targets. Our work has given a
promising direction for addressing DDI prediction problems.
We showed different ways of creating the feature space to
identify the interaction between a pair of drugs. Roughly, we
identified drugs with information on protein structures, and
drugs with information on the protein sequence. We created the
labeled feature space by utilizing the interaction information
available in DrugBank. The combination of the structure and
sequence information resulted in 904 drugs. Unlike previous
methodologies, we considered only protein sequence and
structure similarity networks for the first time to predict drug
interactions. In addition, our similarity network computation
technique allows extracting important protein features in terms
of different distance measures.

The major drawback of our work is the lack of availability
of protein structure level and sequence level information of the
same drugs. As we mainly focused on Drugbank and Protein
Data Bank (PDB). It was a challenge to find the commonality

between the two different datasets. Moreover, the datasets
have significantly more unknown interactions than known
interactions. Thus, this creates a problem of data imbalance,
especially if we do not consider appropriate thresholds for the
unknowns. However, the time and space complexity for feature
space generation is significant which will need to be addressed
in the future.

VI. CONCLUSION

In this study, we proposed a novel drug-drug interaction
detection mechanism. The proposed model is divided into
three major chunks. The first is focused on building the
similarity profiles from Drug Bank and PDB. The second is
the creation of an integrated similarity network (PS3N) about
drugs, using information about their protein targets, namely,
the protein sequences and protein structures of such targets.
The third component is how information from the integrated
network is used to develop a deep neural network model for
improved prediction of the potential drug interactions. We
compare the results produced using the proposed PS3N in
a deep learning framework with results from other recent
machine learning-based approaches. The comparisons showed
that our proposed methodology is quite competitive with
respect to the state-of-the-art, at times outperforming the state-
of-the-art methods. Though the computational complexity is
high for the pre-processing, there are still opportunities to
improve the performance of the model and also improve the
datasets as well.

In our proposed methodology, we showed a new approach
to dealing with the DDI prediction problem, by exploit only
genetic information about the drug protein targets, in par-
ticular, information about their protein sequence and protein
structure. Potential future work will be to study how the
general approach could be extended to other adverse drug
events, beyond DDIs. Another would be to see if the general
approach can be adapted to use other types of feature attributes
about the medications, or about interacting drugs.
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