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Abstract. With greater impetus on broad postmarket surveillance, the Voice of the Cus-
tomer (VoC) has emerged as an important source of information for understanding
consumer experiences and identifying potential issues. In organizations, risk management
groups are increasingly interested in working with their information technology teams to
develop robust VoC listening platforms. Two key challenges have impeded success. First,
prior work has leveraged diverse sets of channels, adverse event types, and modeling
methods, resulting in diverging conclusions regarding the viability and efficacy of various
user-generated channels and accompanying modeling methods. Second, many existing
detection methods rely on “mention models” that have low detection rates, have high false
positives, and lack timeliness. Following the information systems design science approach,
in this research note we propose a framework for examining key design elements for
VoC listening platforms. As part of our framework,we also develop a novel heuristic-based
method for detecting adverse events.We evaluate our framework andmethod on two large
test beds each encompassing millions of tweets, forums postings, and search query logs
pertaining to hundreds of adverse events related to the pharmaceutical and automotive
industries. The results shed light on the interplay between user-generated channels and
event types, as well as the potential for more robust event modeling methods that go
beyond basicmentionmodels. Our analysis framework reveals that user-generated content
channels can facilitate timelier detection of adverse events: on average, two to three years or
earlier than commonly used databases. The inclusion of negative sentiment polarity in the
models can further reduce false-positive rates. Additionally, we find social media channels
provide higher detection rates but lower precision thando search-based signals. The search and
web forum channels are timelier than Twitter. The proposed heuristic-based method attains
markedly better results thando existingmethods—with earlier detection rates of 50%–80%and
far fewer false positives across an array of VoC channels and event types. The heuristicmethod
is also well suited for signal fusion across channels. Our note makes several contributions to
research. The results also have important implications for various practitioner groups, in-
cluding regulatory agencies and risk management teams at product manufacturing firms.
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1. Introduction
Product-related adverse events can have profound
monetary and societal implications in various in-
dustry contexts. For instance, adverse pharmaceuti-
cal drug reactions are responsible for between 3% and
12% of all hospital admissions (Ritter 2008), resulting
in millions of hospitalizations and more than 100,000
deaths annually (Sarker et al. 2015). The pharmaceu-
tical drug Pradaxa alone has caused 9,000 hospitali-
zations, 1,000 deaths, and $650 million in lawsuit
settlements since 2014 (Thomas 2014, Colella-Walsh
2019). Similarly, in the automotive industry, Toyota
recently settled lawsuits totaling $3.4 billion and $2.3
billion for inadequate rust protection on their trucks,
and the unintended acceleration “sticky pedal” fiasco,
respectively (Schweinsberg 2012, Fredericks 2014).
Traditional adverse event reporting mechanisms
have involved formal reporting systems that feed into
online databases. Examples include the Adverse Event
Reporting System (FAERS) of the U.S. Food and Drug
Administration (FDA) and the National Highway Traf-
fic Safety Administration’s (NHTSA) safety issues
database. Such databases constitute an invaluable data
source for postmarket surveillance. However, many
studies have noted the limitations of overreliance on a
single channel—most notably, limited coverage of the
broad set of adverse events encountered by a diverse
consumer population (Forster et al. 2012).

With the rise of big data analytics (Agarwal and
Dhar 2014) and greater impetus on broader post-
market surveillance, the Voice of the Customer (VoC)
has emerged as an important source of information
for understanding consumer experiences and iden-
tifying potential issues (Zabin et al. 2011, Boynton
2013). This is partly due to increased quality, volume,
and timeliness of available VoC information, which
encompasses various user-generated content chan-
nels including social media, search queries, consumer
reports, etc. One of the biggest VoC use cases remains
managing risk (Zabin et al. 2011, Browne 2015). For
instance, in 2014, for the first time ever, the FDA
received more adverse drug reports from consumers
than from healthcare professionals—and the volume
of customer search queries was orders of magnitude
higher (White et al. 2013). Similarly, social media
channels offer great potential for adverse event de-
tection for a myriad of products (Abrahams et al.
2015, Sarker et al. 2015). Relevant stakeholders in-
terested in leveragingVoC include regulatory agencies,
product manufacturers, consumer advocacy groups,
and financial investment firms. In such organiza-
tions, risk management groups are increasingly in-
terested in working with their information technology
(IT) teams to develop robust VoC listening platforms
(Fenwick et al. 2011) capable of identifying adverse

events faster and more accurately, resulting in fa-
vorable economic and humanistic outcomes.
However, two key challenges have impeded the

success of VoC listening platforms. First, the exist-
ing body of knowledge has leveraged diverse sets of
channels, adverse event types, and modeling methods,
resulting in varying results and diverging conclu-
sions regarding the viability and efficacy of various
online user-generated channels and accompanying
modelingmethods (Schmidt-Subramanian et al. 2014,
Sarker et al. 2015). As Davies (2016, p. 1) noted, “A
myriad tools and techniques can be applied to a VoC
program. This complicates the tasks of investment
prioritization and feedback alignment.” Second,
many existing detection methods rely on “mention
models” that have low detection rates, have high false
positives, and fail to detect adverse events in a timely
manner, rendering them less useful in real-world risk
management contexts (Adjeroh et al. 2014). Conse-
quently, “a key stumbling block for many VoC ini-
tiatives” is the lack of meaningful, actionable insights
(Davies 2016, p. 8). Presently, risk management and
monitoring groups, and IT teams that support such
groups, are lacking guidelines regarding many key
questions such as the following (Schmidt-Subramanian
et al. 2014, Davies 2016): “Which channels should we
be integrating into our listening platform?” “Which
types of detection methods are best suited for our
event types?” “How can we design listening plat-
forms that are practical and valuable in our moni-
toring contexts?”There remains a need to examine the
efficacy of various VoC channels for IT applications
with implications for consumer safety (Agarwal et al.
2010, Abrahams et al. 2015). Furthermore, recent
studies have underscored the need for more ro-
bust detection methods applied to these channels that
can serve as decision aids for monitoring teams. The
two main research questions we seek to answer are as
follows:

1. How effectively can various VoC channels be
used to detect different types of adverse product events
using state-of-the-art signal detection methods?

2. What are the relevant interactions between chan-
nels, event types, and modeling methods, and what
are their implications for the design of VoC listening
platforms?
To tackle these questions, following the information

systems (IS) design science approach, in this research
note we propose a framework for examining key de-
sign elements forVoC listeningplatforms.Aspart of our
framework, we also develop a novel heuristic-based
method for detecting adverse events. We evaluate our
framework and method on two large test beds, each
encompassing millions of tweets, forum postings, and
search query logs pertaining to hundreds of adverse
events related to the pharmaceutical and automotive
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industries. The results shed light on the interplay be-
tween user-generated channels and event types, as
well as the potential for more robust event modeling
methods that go beyond basic mention models. More
specifically, the results from our analysis framework
reveal that user-generated content channels can facili-
tate timelier detection of adverse events: on average,
two to three years earlier than commonly used regu-
latory databases. The inclusion of negative sentiment
polarity in the models can further reduce false-positive
rates across all three channels. Additionally, we find
social media channels provide higher detection rates
but lower precision than search-based signals. In the
context of more explicit/salient events, search and web
forum channels are timelier than Twitter. Furthermore,
certain event types such as drug-related product recalls
are more challenging to detect using user-generated
content channels. Whereas most existing mention
models detect less than half of all events earlier, with
false-positive rates over 75%, the proposed heuristic-
based method attains markedly better results—with
earlier detection rates of 50%–80% and far fewer false
positives across an array of VoC channels and event
types. The heuristic method is also well suited for
signal fusion across channels.

Our note makes several key contributions to re-
search and practice. We contribute to the emerging IS
body of research developing novel analytics capa-
bilities with important business and societal impli-
cations (e.g., Shmueli and Koppius 2011, Chen et al.
2012, Bardhan et al. 2015, Brynjolfsson et al. 2016).
From a design science perspective, our contributions
include a holistic framework for analyzing key de-
sign elements pertaining to VoC listening platforms,
as well as a novel heuristic-based event modeling
method. Our framework unifies and expounds upon
insights and key design elements previously exam-
ined in a disparate manner, affording opportunities
to better understand the interactions between chan-
nels, event types, and modeling methods. The pro-
posed event modelingmethod offers robust detection
capabilities that are largely channel and event ag-
nostic, across multiple industry contexts, thereby
shifting the detection paradigm away from the status
quo, underperforming mention models.

Finally, our research has managerial implications
for various practitioner groups. The framework and
results can offer guidelines for risk management
groups and IT teams tasked with developing and
operating VoC listening platforms. By incorporating
provisions for key monitoring objectives and con-
straints such as timeliness, detection, and false-positive
rates, the framework is well suited for use by several
stakeholders, including regulatory agencies, manufactur-
ing firms, and advocacy groups. Furthermore, the pro-
posed method provides markedly better detection

capabilities, making VoC listening practical and
valuable.

2. Proposed Framework
Organizations broadly recognize the importance of
listening to VoC, with risk management cited as a
primary use case (Zabin et al. 2011, Abrahams et al.
2013). However, the percentage adoption of robust
VoC listeningplatformsandfirms’ perceived capability
maturity of their platforms have both been problem-
atic (Browne et al. 2015). A core issue is that presently,
“knowledge of designing, building, integrating, and
modifying” effective VoC listening capabilities re-
mains low (Davies 2016, p. 5). There is a need for de-
sign frameworks that can bridge the gap between
why organizations deploy VoC listening platforms—
namely, to integrate appropriate channels and de-
rive valuable insights—and actual outcomes (Zabin
et al. 2011).
Design science provides guidelines for the devel-

opment of IT artifacts, including constructs, models,
methods, and instantiations (Hevner et al. 2004).
Several prior studies have utilized a design science ap-
proach to develop business intelligence and analytics-
related IT artifacts, including frameworks,methods, and
instantiations (e.g., Lau et al. 2012, Provost et al. 2015).
In this note,we employ the design science approach to
develop our proposed analysis framework for de-
signing VoC listening platforms.
When creating IT artifacts in the absence of suffi-

cient guidelines, the design science literature sug-
gests that kernel theories may help govern the
development process (Gregor and Hevner 2013). VoC
listening is about tapping into the “wisdom of the
crowds”—the notion that the aggregation of infor-
mation from external groups can garner better in-
sights (Surowiecki 2005). This idea has been used
to fuel “active” participatory approaches such as
crowdsourcing, where organizations engage crowds
via contests or other incentivized sharing structures.
It has also been used as part of “passive” strategies
such as opportunistic crowdsensing or big data an-
alytics applied to crowd-generated data for social
intelligence (Zeng et al. 2010, Brynjolfsson et al. 2016).
Crowds can perform certain types of tasks fairly ef-
fectively, including cognitive tasks such as whether a
given product will be successful or whether a product
has issues (Surowiecki 2005, Sunstein 2006). An im-
portant consideration is the amount of task-related
information available to the crowd—wise crowds are
able to leverage their knowledge, experiences, and
intuition (Sunstein 2006). Additionally, crowd wis-
dom also embodies the following characteristics:
diversity of opinion, independence, decentralization,
and suitable aggregation mechanisms (Surowiecki
2005). These characteristics of wise crowds highlight
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three important implications for VoC listening plat-
forms: (1) impact of tasks and objectives, (2) attributes
of VoC channels, and (3) robustness of signal detec-
tion methods. Effective VoC listening platforms must
carefully consider the design implications of each of
these.

1. Impact of Tasks and Objectives: The major value
proposition of crowd wisdom is that it can facilitate
more accurate, timelier insights, leading to better
outcomes (Sunstein 2006, White et al. 2013). Utility
can be a relative concept, closely related to what the
insights are being used for and by whom. For in-
stance, the PredictIt political stock market’s pre-
dictions about election outcomes might be used by
investors speculating in prediction markets, jour-
nalists covering the election, candidate supporters
eager to know who might win, and special interest
groups looking to get a jump on prospective winners
(Surowiecki 2005). VoC listening platform design
needs to take into account stakeholder trade-offs based
on respective risk tendencies, operational constraints/
capabilities, and major objectives.

2. Attributes of VoC Channels: The diversity, inde-
pendence, and decentralization of user content gen-
erated inVoCchannelsmayhave important implications
for crowd wisdom-gathering capabilities (Surowiecki
2005). Channels such as search queries and vari-
ous social media platforms vary in quality, recency,
uniqueness, frequency, and salience of content cre-
ated (Abbasi andAdjeroh 2014). They also encompass
varying social network structures that can impact in-
formation diffusion patterns (Kwak et al. 2010). Fur-
thermore, these channels may differ in terms of usage

intentions. For instance, search query volume primarily
reflects information acquisition patterns (White et al.
2013, Brynjolfsson et al. 2016), whereas forums are
used for acquisition, dissemination, and sensemaking
via conversations (Abrahams et al. 2015), and Twit-
ter is commonly used for larger-scale broadcasting/
dissemination (Kwak et al. 2010). Consequently, VoC
listening platform designers must understand cross-
channel implications to “prioritize channels based
on value” and “justify a more strategic investment”
(Davies 2015, p. 6).

3. Robustness of Signal Detection Methods: Suitable
aggregation mechanisms are essential for effectively
leveraging crowd wisdom (Surowiecki 2005). These
aggregation mechanisms must perform signal de-
tection, the process of disentangling signal insights
from noise (Cassino 2016). As Abrahams et al. (2013,
p. 871) note, detecting “whispers of useful informa-
tion in a howling hurricane of noise” is a huge
challenge, and filters are needed to extract meaning
from the “blizzard of buzz.” Inadequate signal de-
tection methods can dramatically diminish the utility
of VoC listening platforms, and effectively detecting
signals from unstructured user-generated channels re-
mains difficult (Browne et al. 2015).
On the basis of these important design implica-

tions, we propose a framework for examining VoC
listening platforms (depicted in Figure 1). Listening
tasks and objectives are represented in the form of
stakeholders, event types of interest formonitoring, and
the importance of different event detectionmetrics such
as accuracy and timeliness. VoC channels with vary-
ing characteristics are represented, including social

Figure 1. Framework for Analyzing VoC Listening Platform Design Elements
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media, search queries, and voluntary reporting data-
bases. Key signal detection characteristics incorporated
include different types of detection methods and tem-
poral granularities. Collectively, these considerations
are incorporated in the platform design decision pro-
cess, which provides stakeholder-specific insights re-
garding design choices and their expected values.

Based on Provost and Fawcett (2013) and Blattberg
et al. (2008), the design decision process follows three
steps: (1) attaining inputs from the stakeholder re-
flecting their trade-offs associated with model perfor-
mance outcomes; (2) uncovering the interplay between
design elements and model performance; (3) combin-
ing stakeholder inputs,model performance, anddesign
elements to prescribe the best design choices that sat-
isfy stakeholder priorities.

Two types of information constitute the necessary
stakeholder inputs for the decision process. On the
one hand, operations managers may have a different
threshold for each metric based on their operational
constraints and capabilities—for example, “our team
cannot handle more than a certain signal volume,
necessitating a higher precision threshold.” We de-
note these minimum thresholds, which are similar to
those in Provost and Fawcett (2013), as mP, mR, and
mT. On the other hand, business and risk managers
may have varying preferences for these metrics. For
example, regulators need to take costly auditing ac-
tions for an adverse event, resulting in lower toler-
ance for false positives. By contrast, firms may be
more likely to trade precision for better and timelier
recall so that they can proactively cope with adverse
events. We denote these preference weights as wP,
wR, and wT. These weights are analogous to monetary
costs and benefits, reflecting decision maker trade-offs.
For example, a higher wP and a lower wR implies that
the stakeholder associates a higher cost with false
positives than false negatives.

Next, we use analysis of variance (ANOVA) and
logit regression to uncover the impact of design el-
ements on signal detection performance metrics

Yijklm � {Precision, Recall, Timeliness}. The event type
Ek is a between factor (nested under the event type).
The online user-generated channel Di, signal detec-
tion method Mj, and temporal granularity Tl are
within factors.With Sm standing for individual events,
S/Em(k) denoting events within each type, and εm(ijkl)
as an error term, the structural model describing the
sources of variance becomes

Yijklm � Yt + Ek + S/El(k) +Di +Mj + Tl + εm(ijkl). (1)

Accordingly, we can predict the possible modeling
performance for each of the factorial (design element)
combinations by calculating the marginal means, de-
noted as Pijklm, Rijklm, and Tijklm.
Finally, we generate the expected value of any de-

sign combination by considering preferenceweights and
modeling performance (Blattberg et al. 2008, Provost
and Fawcett 2013). The design element optimization
is formulated as follows:

argmax
P̄,R̄ ,T̄

(wP× Pijklm + wR ×Rijklm + wT× Tijklm
′ ) (2)

s.t. Pijklm >mP & Rijklm >mR & Tijklm >mT,

where Tijklm
′
is a linearly transformed timeliness

measure ranging between 0 and 1.
Figure 2 illustrates an example of the design de-

cision process (Blattberg et al. 2008). Stakeholders
first provide design choices regarding relevant de-
sign elements (highlighted in green) specific to their
contexts. In this example, the focused event type is
product recalls; the processed data are from search
queries and forums; the selected temporal granularities
are daily, weekly, and monthly; and the chosen models
are machine learning (ML) mention models and ad-
vanced models. Within this design choice solution space,
signal detection performances for each of the design
element combinations can be calculated. Combined
with stakeholders’ performance thresholds and met-
ric weights, the platform design decision process
can leverage ANOVA/logit regression and design

Figure 2. (Color online) An Example of Platform Design Decision Process

Abbasi et al.: User-Generated Signals for Adverse Event Warnings
Information Systems Research, 2019, vol. 30, no. 3, pp. 1007–1028, © 2019 The Author(s) 1011



element optimization to identify the optimal design
choice leading to the best expected value, which is
search query–advanced models–daily (path in solid
arrows). At this point, the stakeholder can choose to
accept the design, tweak its preference weights, or
expand its design choices (e.g., consider alternative
VoC channels) to continue to exploring designs with
potentially better expected values. We later provide
empirical results to demonstrate how the framework
can serve as a decision aid for VoC listening plat-
formdesign. The framework affords opportunities for
examining the adverse event detection capabilities of
different design configurations, as well as the overall
impact of various platform design elements. In the
ensuing section, we discuss each component of the
framework, including the state of the art, limitations,
and key gaps.

3. VoC Listening: Related Work and
Research Gaps

3.1. VoC Listening Stakeholders and Types of
Adverse Events

VoC listening platforms are relevant to several stake-
holders, including regulators, manufacturing firms,
consumers and advocacy groups, and investors. In the
United States, regulatory agencies such as the FDA,
NHTSA, and Consumer Product Safety Commission
are actively involved in postmarketing surveillance
(Chen et al. 2009, Abrahams et al. 2015, Sarker et al.
2015). Manufacturing firms monitor their products to
proactively mitigate risk, including “costs of man-
aging reverse flow of products, disposal costs, resti-
tution costs, and legal and liability costs due to any
litigation” aswell as indirect costs such as “loss of brand
image and erosion of market value” (Hora et al. 2011,
p. 766). Similarly, investors/markets are interested in
detecting product issues that may impact their stock
portfolio (Chen et al. 2009).

The key objectives of VoC listening for risk man-
agement are better and faster identification of ad-
verse events (Zabin et al. 2011, Yang et al. 2014). From
a big data analytics perspective, these objectives trans-
late into three primary metrics: precision, recall, and
timeliness. Precision and recall measure the ability to
accurately identify adverse events. Recall denotes de-
tection rate, whereas precision is a measure of false-
positive rate, with implications for “alert fatigue.”
Timeliness is howmuch earlier an adverse event can be
detected, either in comparison with the point in time
when the event transpires or relative to status quo
detection methods (Hora et al. 2011). It is a significant
VoC listening objective because earlier detection can
expedite remedial actions, lessening social and mon-
etary costs. Timely detection allowed Johnson &
Johnson to efficiently recall 31million units of Tylenol

in 1982, and Mattel was able to recall nearly 1 million
toys containing lead-based paint in 2007. In both
cases, early detection allowed product to be pulled
from the supply chain before it adversely impacted
consumers (Hora et al. 2011). Conversely, analysis of
search query volume data could have allowed one to
two years earlier detection of a dangerous adverse
drug event causing hyperglycemia—potentially ex-
posing one million fewer consumers to the event
(White et al. 2013).
It is important to note that different stakeholders

might define “better and faster” differently. For in-
stance, a regulatory agency with a panoramic view of
an entire industry encompassing thousands of prod-
ucts might have less bandwidth for false positives
than a specific manufacturing firm with a single prod-
uct line and more available monitoring resources. We
underscore this point in our evaluation section by in-
cluding results from the vantage point of regulators
(industry level) and an individual firm. Additionally,
we provide a platform design decision process com-
ponent to consider the trade-offs facing different stake-
holders and help them find the best design choices
based on their thresholds and preferences, which is
described in more detail in Section 3.4.
Past studies have examined adverse events that

varywith respect to the product or nature of the event.
For instance, some studies have analyzed events
pertaining to specific categories of products such as
pediatric or cancer medications (Hadzi-Puric and
Grmusa 2012). Others have focused on events re-
lated to a set of manufacturers, such as Honda,
Toyota, and Chevrolet (Abrahams et al. 2015). In the
context of postmarketing drug listening, Sarker et al.
(2015) observe that most prior studies have examined
a maximum of 5–10 products. Other studies have
emphasized the importance of examining a wider set
of products and event characteristics such as prod-
uct recalls, safety communications, ongoing reviews,
and severe warnings (Hora et al. 2011, Abbasi and
Adjeroh 2014). In a broader review of social listen-
ing research spanning multiple industries and event
types (including manufacturing defects, newspaper
complaints, consumer electronic experiences), Abra-
hams et al. (2013) also noted that most studies had
relied on a single event type. From a VoC listening
platform perspective, there remains a need to examine an
array of important adverse event types related to multiple
stakeholders.

3.2. VoC Channels
Prior studies have noted the limitations of overreli-
ance on any single data source, including uneven
reporting patterns from consumers because of a lack
of awareness of that particular channel (Yang et al.
2014, Abrahams et al. 2015). For instance, in the
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context of adverse drug events, Xu and Wang (2014)
find that FAERS yielded detection precision rates
below 2.5%—meaning 39 out of every 40 alerts trig-
gered was a false positive. This is consistent with our
own evaluation results presented later in Section 6, in
the context of pharmaceutical and automotive events.
Inevitably, monitoring teams relying on such data
sources must be conservative in their assessments as a
result of fewer potential needles in the proverbial
haystack.

Relevant alternative user-generated content chan-
nels are those encompassing consumer-contributed
content (Yang et al. 2014). The most common cate-
gories incorporated in past studies are social media
such as discussion forums and Twitter (Abrahams
et al. 2015, Lardon et al. 2015, Sarker et al. 2015) and
search query logs (White et al. 2013). Twitter test bed
sizes have ranged from a few thousand tweets con-
taining a specific product name to billions of tweets
mentioning an entire category of products (e.g., “cancer
drugs”) (Sarker et al. 2015). Discussion forums uti-
lized were primarily consumer or product specific—
for instance, the Honda-Tech forum for Honda issues
(Abrahams et al. 2013) and health discussion forums
such as MedHelp, Drugs.com, and DailyStrength for
adverse drug events (Yang et al. 2014, Sarker et al.
2015). Query log data have typically been attained
from major search engines such as Google, Bing, or
Yahoo!, and they usually include search query fre-
quencies over time (Karimi et al. 2015).

Prior studies have typically focused on a single
channel. However, these channels exhibit different
characteristics with respect to credibility, frequency,
and salience (Agarwal et al. 2010, Abbasi andAdjeroh
2014). For instance, on the one hand, social media
channels such as Twitter and certain health forums are
prone to spam, resulting in lower credibility (Karimi
et al. 2015). On the other hand, forums have lower
volume of content than Twitter and search queries
but exhibit greater salience—forum postings are ca-
pable of incorporating greater background and con-
text than a 140-character tweet and far more relative
to a query encompassing a few search terms (Abbasi
andAdjeroh 2014). Examining the user journey across
multiple channels has become amajor area of research
with applications in e-commerce and marketing (e.g.,
customer journey and path-to-purchase) (Song et al.
2014). Similarly, there is a need to examine the effec-
tiveness of different channels in the context of VoC lis-
tening. However, it remains unclear what the trade-offs of
the user-generated content channels are with respect to
detection rates, false positives, and timeliness of signals
(Sarker et al. 2015). From a VoC listening platform
perspective, the lack of cross-channel studies indicates a
paucity of insights that can guide multichannel listening
strategies.

3.3. Signal Detection Modeling Methods
Signal detection methods for identifying adverse
events can be broadly grouped into two closely re-
lated categories: basic mention models and machine-
learning-based mention models (Abrahams et al.
2013, Karimi et al. 2015). Basic mention models con-
sider disproportionality in the occurrence of key
product and incident-related tuples relative to over-
all occurrences of these terms. For instance, in the
context of adverse drug event detection, basic men-
tion models typically measure a combination of a
drug reference, some reaction-related terms, and, in
some cases, anatomy or drug administration–related
terms (Adjeroh et al. 2014). An example of this would
be, “I have been taking Drug x and began experi-
encing headaches and pain in my lower back.” Sev-
eral basic mention models have been proposed that
leverage these product–incident co-occurrence values
as input. Here, we briefly describe these methods;
further details appear in Online Appendix A.
Relative risk (RR) is computed as the relative ratio

of observed and baseline counts p(j|i)/p(j), where i
and j denote mentions of product and effect, re-
spectively (DuMouchel 1999). One noted limitation
of RR is its susceptibility to sampling variability in
situationswhere the observed and baseline counts are
both small (Karimi et al. 2015). Proportional report-
ing ratios (PRR) extends RR by considering the co-
occurrence of i and j relative to the occurrence of j in
instances without i (Yang et al. 2014). Given that i′

represents all product i instances devoid of j, PRR can
be interpreted as p(j|i)/p(j|i′). Another commonly
usedmentionmodel is the reporting odds ratio (ROR)
(Hadzi-Puric and Grmusa 2012): p(j|i)/p(j′|i)/p(j|i′)/
p(j′|i). In benchmarking studies on two data sets
encompassing adverse drug event reporting system,
medication order, and abnormal laboratory result
instances, ROR performed comparably in some cir-
cumstance, and slightly better in others, relative to
comparison methods such as PRR (Liu et al. 2013).
Information component (IC) is an information theory-
based measure that leverages the mutual informa-
tion between i and j. IC is used by the World Health
Organization, often with better results than other
methods (Lindquist 2008). It can be computed as
log2(p(j|i)/p(j)). Basic mention models have also been
used in non-health event detection contexts. Abrahams
et al. (2012) have developed a “smokewords”method
in which terms were weighted based on their oc-
currence in different types of automotive adverse
event mentions.
Other mention models have incorporated super-

vised or unsupervised machine learning methods that
learn patterns involving product and incident terms
derived from dictionaries, lexicons, and/or thesauri.
For instance, Yang et al. (2013) build linear kernel
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support vector machine (SVM) classifiers that in-
cluded semantic features such as bag-of-words, prod-
uct names, and incident term lexicons to determine
whether a particular product reference was a valid
mention. Abrahams et al. (2013) train linear SVM and
naı̈ve Bayes classifiers coupledwith a term list feature
set to detect vehicle component mentions. Similarly,
in the health context, Liu and Chen (2013) develop an
SVM classifier that used a custom kernel for relation
extraction. For all sentences containing drug and
reaction keywords, they derived the shortest de-
pendency path using the StanfordCoreNLP pack-
age. Next, they replaced all path tokens with higher-
frequency class tokens encompassing part-of-speech
tags and entities (e.g., drug, event). The custom kernel
function K(x,y) was simply the number of common
features between the modified shortest dependency
path strings for sentences x and y. SMART combined
a logistic regression classifier with a feature set in-
cluding style, semantic, and product attributes to
detect defect mentions in consumer electronics and
vehicle discussion forums (Abrahams et al. 2015).
Sampathkumar et al. (2014) represented product name,
relation keywords, and incidents as hidden states in a
hidden Markov model (HMM). Their HMM allowed
these three named entities to occur in any order with-
in a message and also included a fourth state for all
“other” words within the message. A popular un-
supervised method has been association rule mining,
where product–incident co-occurrence patterns are
derived based on their support and confidence scores
(Yang et al. 2014).

Given mention occurrence frequencies over time,
time-series analysis can be performed at different
temporal granularities (e.g., daily, weekly, monthly,
yearly). Similar to prior temporal prediction studies
(e.g., Fang et al. 2013), most signal detection methods
usewindowing to apply temporal association rules or

z-score thresholds to the time series at each time
period ti ∈ T = {t1, . . ., tg}. This is done by computing
these measures over the dynamic timewindow t1 to tg
or in some cases beginning with some “training pe-
riod” to allow suitable thresholds for earlier time
periods close to t1 (Jin et al. 2010, Yang et al. 2014).
Figure 3 illustrates how the thresholds τg and τg+1 are
used for the time-serieswindows ending at tg and tg+1,
respectively. In this case, the signal at tg+1 triggers an
alert with timeliness te − tg+1. To avoid future leaks,
for instance, let us assume we are building a monthly
model over data beginning in January 2008 (t1), and
we are currently at January 2009 (tg) in our time-
series windowing. The model will only use all data
from January 2008 through December 2008 to try to
detect a signal. Furthermore, let us assume that this
triggers a spike in June 2008. For timeliness purposes,
the signal time period will still be considered January
2009 (tg) because the signal was detected using data
up to that point in time.Windowing is performed across
all data in the test bed, until tf.
In summary, existing mention models mostly

consider co-occurrence between individual products
and incidents.However,many adverse events pertain
to product interactions, entire categories of prod-
ucts, and/or incidents encompassing multiple issues.
Furthermore, they fail to weight different mention
components based on their implications for preci-
sion, recall, or timeliness in diverse contexts. Not
surprisingly, performance results have varied, with
recall rates often below 50% (Adjeroh et al. 2014).
Those that examine precision have observed that such
methods are prone to high false-positive rates—in
many cases, 75% of signals or higher (Adjeroh et al.
2014). It is unclear how effective existing mention models
are when applied to various VoC channels, for a broad
array of products and adverse event types. There is a need
for more robust signal detection methods beyond basic

Figure 3. Illustration of Time-Series Setup for Adverse Event Signal Detection
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“mention” models, capable of enhanced precision, recall,
and timeliness.

3.4. Considering Stakeholder Priorities
Stakeholders have varying priorities based on their
risk tendencies, operational constraints/capabilities,
and major objectives. These priorities can have a sig-
nificant impact on the design elements of a VoC lis-
tening framework. The expected value framework
(Provost and Fawcett 2013) and profitability frame-
work (Blattberg et al. 2008) provide an analytical
approach that can guide the design decision process.
They begin by decomposing the focal problem into all
the possible outcomes of implementing an analytics
model, obtain values (e.g., costs and benefits) from
stakeholders to factor in trade-offs associated with
different outcomes; identify design elements affecting
the occurrence probabilities of different outcomes;
weight the values by the probabilities of reaching a
consolidated expected value; and provide prescrip-
tions about which design element combination and
what level of modeling performance (performance
thresholds) are needed to accomplish a desirable
expected value.

Whereas both frameworks are well suited for guid-
ing evaluations and providing prescriptions for design-
ing VoC platforms, each focuses on binary classification
in a business context, necessitating adaptation to our
signal detection context for a few reasons. First, for bi-
nary classification problems, the confusion matrix de-
termining the possible outcomes is readily attainable.
For our signal detection context, however, the possible
outcomes worth consideration are beyond the confu-
sion matrix. For instance, for a given event, we only
need a single true positive. Additionally, the nega-
tives in signal detection contexts are often harder to
understand—an unknown unknown. Second, the tem-
poral aspect of signal detection is critical in practice,
which is not well captured in a binary classification
context. Finally, in adverse event detection contexts,
costs and benefits generally require more time and
effort to obtain (e.g., hard to convert the societal ben-
efits and costs into monetary values). Therefore, it is
unclear how effectively existing analytic approaches for
guiding design decisions can be adapted to the VoC lis-
tening platform context.

3.5. Inclusion of Sentiment Information and
Signal Fusion

Sentiment analysis has seen limited usage in past
studies examining adverse events in VoC channels.
Sarker and Gonzalez (2015) include sentiment po-
larity scores derived using the popular SentiWordNet
lexicon (Esuli and Sebastiani 2006). They include the
overall negative sentiment polarity as an input fea-
ture in their SVM classifier and find that the inclusion

of sentiment provided a small lift in mention de-
tection accuracy on their social media data set. Sim-
ilarly, Yang et al. (2013) include an affect lexicon.
Abrahams et al. (2012) use the Harvard General In-
quirer dictionary of positive and negative keywords
and find that it did not improve vehicle defect
identification from online discussion forums. They
conclude that general-purpose lexicons might be in-
sufficient to capture nuanced opinion cues appearing
in domain-specific online forums. In the context of
search, Turney and Littman (2003) propose a simple
yet effective method pointwise mutual information
method for deriving the sentiment of a search term: by
comparing the search query volume for the term plus
a set of positively orientedwords (e.g., good, positive)
and the search query volume for the term and a set of
semantically opposed words (e.g., bad, negative).
Similar to sentiment analysis, signal fusion methods

have seemingly limited usage for identifying adverse
events despite potential for enhancing precision and
recall by combining results across channel-specific
signals via fusion schemes that are analogous to en-
semble votingmethods used inmeta-learning (Adjeroh
et al. 2014). Given that certain user-generated content
channels such as Twitter and search have limited salience
(Abbasi and Adjeroh 2014), inclusion of sentiment in-
formation could provide an important context refinement
regarding user intention in these channels (Sharif et al.
2014). In the same vein, the potential for signal fusion
methods to enhance VoC listening capabilities remains
underexplored.

4. Mention Model and Genetic
Algorithm-Based Signal Detection

Robust signal detection is essential for effectively
tapping into crowd wisdom (Surowiecki 2005). Here,
we describe the basicmentionmodel and then discuss
our proposed novel heuristic-based method. We use
examples related to health adverse drug events, but
the methods are generalizable to an array of adverse
product event contexts. We later evaluate them on
health and automotive test beds.
To identify potential incident references, brand/

product, product attribute, and consumer experience
lexicons are utilized. An automated tagging tool was
developed to assign lexicon tags to references ap-
pearing in VoC channel documents. In the health
adverse drug event context, these lexicons include drug,
anatomy, reaction, and drug administration key-
words. For example, the statement “I’ve experi-
enced chest pains ever since I started taking Chantix”
would be tagged as “I’ve experienced <ANATOMY>
<REACTION> ever since I started taking <DRUG>.”
For word-sense disambiguation, we use the CMU
part-of-speech tagger designed specifically for short
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informal texts to help improve the likelihood that
anatomy, side effect, and administration tags were
applied appropriately.

4.1. Mention Model for Signal Detection
The basic mention model incorporated in this study
can be described as follows. For each product E in our
database, we build a fully unsupervised time series.
Let tk ∈ Tx = {t1, . . ., tg} signify a given time window,
where tg is the current time period of the analysis and
tg is less than the final time period tf. Let CDn repre-
sent the number of product names (D) associatedwith
E that appear in a document n. Let {d1, . . ., dN} signify
the set of documents occurring during tk within a
given channel, where each CDn ≥ 1. Furthermore, in
our health context example, let CAn, CRn, and CMn

represent the accompanying product attribute and
customer experience lexicons. These would be number
of anatomy (A), reaction (R), and administration (M)
terms present in document n, respectively. The ag-
gregated raw score for time tk is then computed as
s(tk) =

∑N
n�1 CDn + CAn + CRn + CMn. Each s(tk) is con-

verted to a z-score z(tk) = (s(tk) − µg)/σg, where µg and
σg are the mean and standard deviation, respectively,
across all t in Tx plus the training period (see Figure 3)
where s(tk) > 0. For a given event time series, the basic
model considers an alert at time tk if z(tk)> τg, where τg
is a threshold for the current window. If tk is less than
the event time period te, it is considered a positive
signal with timeliness te − tg; Tx can vary depending
on the resolution of the signals—such as daily or
monthly timemodels, as well as the value of the current
window time period tg.

It is important to note that a single, fixed set of
anatomy, administration, and reaction terms are
utilized for all drugs. Each product E is represented as
a single time series where the y-values are the z-
transformed s(tk). Each event is a spike that exceeds
the z-score threshold. Hence, the method is purely
unsupervised, without use of any event knowledge a
priori. To ensure avoidance of future leaks, neither
the drug, reaction, anatomy, and administration terms
nor the spikes that are generated use any event
information.

4.2. Genetic Algorithm-Based Signal Detection
Effective signal detection entails disentangling sig-
nal from noise (Sunstein 2006). One of the biggest
limitations of prior mention models has been that
they adopt a “one-size–fits-all” approach—applying
the same features, weights, and statistical patterns to
a diverse set of products, channels, and user experiences.
Basic models apply a cookie-cutter disproportionality
idea to an array of product–incident mention tuples,
resulting in low precision rates. Conversely, supervised

machine learning methods offer better precision but
often lack generalizability necessary to garner adequate
recall (because of limited diversity of the training
data with respect to channels and products). Our pro-
posed genetic algorithm-based signal detection (GASD)
method attempts to address these concerns by building
signals capable of better accounting for product- and
channel-specific characteristics. The two key aspects
of the method are its (1) objective function, which re-
wards the creation of signals that garner fewer, poten-
tially higher-quality, alerts faster; and (2) the weighting
method, which allows better contextualization of ref-
erences to product, attribute, and user experience terms
for each individual product. GASD attempts to bet-
ter harness the diversity of wise crowds for enhanced
aggregation, in an unsupervised manner devoid of
overfitting. The details are as follows.
GASD learns time-series-specific weights for vari-

ous product, incident, and experience terms. Extend-
ing our drug example, let FDn represent the occurrence
vector of drug terms in document n for product E,
and let WD denote the vector of weights for drug
terms where eachWDx ∈ {0, 1/(b − 1), 2/(b − 1), . . .,1},
and b indicates the number of discrete weight in-
tervals. In GASD, s(tk) � ∑N

n�1(∑WDFDn +∑
WAFAn +

∑
WRFRn +∑

WMFMn), with the objective of finding
suitable values for WD, WA, WR, and WM. Within a
population of solutions P, we represent each solution
pq as a binary “bit” string encompassing values for
all four sets of terms. Each weight value in pq is re-
presented using h bits such that there are 2h = b
possible weight values for each term. For each pq, the
fitness function f(pq) is used to evaluate each signal
s(tk) within and across each window Tx. The fitness
function considers the timeliness of the signal, the im-
portance of incorporating key reference terms, and
provisions to alleviate false positives:

f (pq) �max
Tx,k

((tf − tg)D(s(tk))(A(s(tk)) + R(s(tk))
+M(s(tk))))/tf ln(l + 1), (3)

where tg denotes the end of a given window Tx, tk ∈ Tx

indicates one of the time periods that triggers an alert,
and D(s(tk)), R(s(tk)), and so forth, indicate the num-
ber of drug, reaction, etc., terms appearing in the top
r ranked list in period k based on WF values. The
variable l denotes the total number of alerts triggered
in Tx, used to penalize the fitness value for signals
generating excessive alerts. Further details regarding
the GASD fitness function and weighting mecha-
nism appear in Online Appendix H.
Figure 4 shows the GASD formulation using the

aforementioned fitness function and bit-string encod-
ing. GASD is run for each sliding window instance t1
to tg as previously illustrated in Figure 3. For each
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subsequent generation, the selection probability of
a solution is proportional to its f(pq). Within the new
solution set O, crossover is applied on adjacent so-
lutions oq and oq+1 with probability c, and mutation
is applied on individual bits within each pq with
probability m. In results reported, c = 0.7, m = 0.001,
and r = 20 were used (i.e., no tuning was performed,
to avoid overfitting). Stopping criterion for genetic
algorithms are an important consideration (Aytug and
Koehler 1996). In our analysis, we observed that GASD
consistently converged within 200 iterations; however,
because run times were not a concern, we used a fixed
500-iteration stopping criterion (i.e., terminate after 500
generations).

Figure 5 presents a short illustrative example of the
effectiveness of GASD. The chart on the left depicts
the GASD signal for the drug Actos, relative to the

mention model (right). The FDA announced an in-
vestigation on 9/17/2010 for bladder cancer in pa-
tients using Actos over an extended period (denoted
with an X). The horizontal lines indicate an alert
threshold, and TP and FP denote true/false alerts.
From the figure it is evident that although both sig-
nals appear similar, GASD’s term weighting is able
to allow earlier detection and fewer false positives
by dynamically weighting various drug, reaction,
anatomy, and administration keywords, resulting in
subtle yet impactful changes in signal strengths.

5. Evaluation Test Bed and Design
Two adverse product event test beds were incorpo-
rated. In the main paper, we report results from the
health industry, related to adverse drug events. Online
Appendix C presents results from the automotive

Figure 4. GASD Formulation Summary

Figure 5. (Color online) Example Illustrating GASD (Left) vs. Mention Model (Right) Signal for the Drug Actos
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industry for adverse automotive events. For our
health test bed, we collected data on all drugs that
had a first-time FDA drug alert for adverse drug
events between 2011 and 2013, resulting in 143 events
related to 133 unique drugs associated with a myr-
iad of illnesses and ailments, including diabetes, blood
pressure, cholesterol, cancer, depression, chronic pain,
birth control, insomnia, Parkinson’s, arthritis, sei-
zures, etc. The events corresponded to four types:
drug safety communications are first notifications of a
new adverse reaction problem; ongoing reviews in-
dicate that the FDA is investigating whether there is a
problem; FDA news is often forwarded from phar-
maceutical company self-reported issues; and product
recalls are typically due to a manufacturing, pack-
aging, or labeling issue, as opposed to a drug issue.
Data from three user-generated content channels
were collected: Twitter, forums, and search logs.
Table 1 presents an overview. Approximately 12 mil-
lion tweets containing drug-name keywords span-
ning 2006 to 2014 were gathered through Topsy’s API.
Over 5 million postings from 10 popular health fo-
rums were attained using web crawlers. The postings
spanned the time period 2000 onward. These mes-
sages were converted to sentence chunks, resulting in
26 million forum instances in the test bed. This was
done because the forum messages were lengthier
and often contained discussion of multiple topics.
Sentence-level analysis resulted in better perfor-
mance and information units that were more focused
and consistent with the tweets and search queries.
Search query frequencies over time were attained
from publicly available online sources, as done in
prior studies (Brynjolfsson et al. 2016). In particular,
we used Google Trends to attain search query volume
over time at different temporal granularities for terms
in our drug, reaction, anatomy, and administration
lexicons, as well as search term co-occurrence vol-
umes. In addition, 6.2 million reports submitted to
FAERS were also incorporated in the baseline eval-
uation to illustrate the value of search and social
channels. Consistent with prior studies, for each

report, the set of drugs and reaction terms were used
to build the FAERS signals (Xu and Wang 2014).

6. Baseline Evaluation: Comparing
ExistingMentionModels and Examining
Regulatory Databases

Before investigating our core research questions, we
conducted two baseline evaluations. The purpose of
the first was to illustrate that the baseline mention
model utilized in this study was indeed indicative
of the types of performance results attained using
methods from prior studies. We incorporated several
representative comparison methods discussed in the
literature review, including basic mention models,
machine-learning methods used in prior adverse
product event detection studies, and general event
detection methods. Performance on the Twitter and
forum test beds was examined at three temporal res-
olutions for the signal time series (day, week, and
month). For both channels, we only used data from
2008 onward to allow for better comparison of across-
channel performance. For each method, a mention
frequency time series was constructed with τ tuned
using a grid search. A step interval of 1 was used to
compute mean and standard deviation (the basis for
the z-score threshold) over a growing window T.
For each event, windowing was performed until the
FDA first report date.
Consistent with prior work, all methods were evalu-

ated using the standard aforementioned metrics: recall,
precision, and timeliness. However, given that our task
entails identifying adverse events earlier than the first
official mention, “positives” were only those signals
that occurred prior to the regulator first-report date
for that particular drug event. For each such identi-
fied “positive” signal, a determination of true positive
(TP) or false positive (FP) wasmade using a two-stage
approach. First, the key drug, reaction, and anatomy
keywords appearing in the signal were automatically
compared against those appearing in the regulator
descriptions. If the similarity was below a certain

Table 1. Overview of Channel and Event Data in Health Test Bed

Channel Quantity Time frame Description

Twitter 12 million tweets 2006–2014 Tweets containing drug keywords
Forums 5 million postings; 26 million sentences 2000–2014 Collected from AskaPatient, Cafepharma,

DailyStrength, Drugbuyersguide, Drugs.com, Drugs-
Forum, eHealth, MedHelp, MedsChat,
PatientsLikeMe

Search Millions of searches 2004–2014 Query frequency time series aggregated over millions
of searches

FAERS 6 million reports 2004–2014 Reports submitted by healthcare professionals and
consumers to the FDA Adverse Event Reporting
System

Events Drug safety communications—87; Ongoing reviews—12; Product recalls—35; FDA news alert—9
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threshold, the signal was automatically rejected as a
false positive. For those above a threshold, an inde-
pendent domain expert examined a sample of doc-
uments pertaining to the signal (e.g., the underlying
tweets, postings, queries) to determine relevance.
Precision and recall were computed as TP/(TP + FP)
and (earlier detected events)/(total events), respec-
tively. Timeliness was derived as the earliest average
number of days for a detected event, relative to the
first FDA event date.

Details regarding the comparison mention models
and the evaluation results appear in Online Appen-
dix B. Here, we summarize results for the mention
model (labeled “Mention” in Figure 6) and the av-
erage results for the three comparison categories
of methods evaluated: basic co-occurrence mention
models (Basic), machine-learning methods (ML) used
in prior adverse product event studies, and general
machine-learning methods used in event detection
studies (General ML). “Mention” yielded comparable
results to those utilized in prior research; it had the
highest recall and precision values near the top as
well. It also yielded timelier results than other basic
co-occurrence models. Overall, the results underscore
some of the limitations of existing mention models al-
luded to in the related work section—they generated
low precision (mostly below 20%) and, with the ex-
ception of certain daily models, also yielded recall
rates below 50%.

As previously alluded to, prior studies have noted
the limitations of spontaneous reporting databases
such as FAERS (Xu and Wang 2014, Yang et al. 2014).
To illustrate the potential of alternative VoC channels,

we ran the four baseline mention models (RR, PRR,
ROR, and IC) on the 6 million FAERS reports in our test
bed (mentioned in Table 1). Because the FAERS data
set did not include text descriptions, only drug and
side effect sets, we could not utilize our machine
learning methods. We compared the precision, recall,
and timeliness of FAERS versus Twitter and fo-
rums for the 143 events using these four mention
models and found that Twitter and forums yielded
significantly better performance across all three per-
formance metrics, for all four mention models (all
p-values < 0.001). Figure 7 presents the daily, weekly,
and monthly precision, recall, and timeliness results
for FAERS, Twitter, and forums, averaged across the
four baseline mention models. Consistent with prior
studies (e.g., Xu and Wang 2014), FAERS garnered
precision rates below 3% and recall rates that were
15–20 points lower than the social media channels.
As expected, the timeliness of FAERS true-positive
alerts was typically within three to five months of the
official first notification date. This is not surprising
because FAERS is the primary data source for many
of those first notification dates in the first place.
Conversely, the social media channels were much
timelier.
Our baseline evaluation highlights the potential of

alternative VoC channels relative to existing report-
ing databases, and it shows that the mention model
incorporated in this study is representative of prior
baseline models. In the following section, we in-
corporate this mention model as well as the proposed
heuristic-based model to examine the effectiveness of
user-generated content channels using more robust

Figure 6. (Color online) Performance of Mention Models on Forum (Top Row) and Twitter (Bottom Row) Channels
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detection methods, and we assess the interplay be-
tween channels, event types, and modeling methods
for VoC listening platforms.

7. Evaluation Results
To investigate our two research questions, we used
a factorial design encompassing all three channels
(Twitter, forums, and search), two types of signal
detection models (basic mention model and GASD
model), and three temporal granularities for the signal
time series (day, week, and month). Initially, sentiment
was excluded from the analysis. This resulted in 18 total
combinations of signal detection methods. Once again,
we only used data from 2008 onward for each channel
to allow better comparison of across-channel perfor-
mance. In all evaluations, τ = 1 was used for GASD as a
default (i.e., no tuning), whereas, once again, the best
setting for all comparison methods over a grid search
was adopted.

7.1. Event Detection Performance
Table 2 presents the results. GASD outperformed the
mention model by a wide margin in terms of recall
and precision on all settings (typically more than
10 points better). It also yielded timelier signals on most
settings, generally detecting events 100–200 days
earlier, or more. The recall rates for GASD were in
the 55%–80% range, and it attained markedly better
precisions rates than prior studies—above 34% for all
settings and, in some cases, upwards of 50% or 60%.
With respect to channels, forums and Twitter gar-
nered higher recall than search (20 points better on
average), but search attained precision rates that
were typically at least 10–15 points better. Similarly,
the classic trade-off between recall and precision was
also observed with respect to temporal resolutions:
daily models yielded the best recall but were also
prone to the most false positives (likely as a result of
greater volatility and noise). Recall rates across event

Figure 7. (Color online) Performance of Twitter and Forums Relative to FAERS Using Baseline Mention Models

Table 2. Results Across Channels, Model Types, and Temporal Granularities in Health Test Bed

Channel Model

Overall metrics Event type recall

Recall Precision Time in days mean (SD) Ongoing review Safety comm. Product recall News alert

Daily models
Search Mention 32.2 25.5 1,022 (634) 50.0 31.8 29.4 11.1

GASD 42.0 48.3 1,132 (489) 50.0 37.6 47.1 0.0
Forums Mention 67.1 7.4 1,049 (590) 75.0 72.9 52.9 55.6

GASD 79.7 35.8 1,426 (421) 91.7 80.0 73.5 22.2
Twitter Mention 65.0 12.7 677 (426) 75.0 75.3 44.1 22.2

GASD 79.7 35.9 895 (238) 91.7 84.7 73.5 11.1
Weekly models

Search Mention 36.4 43.5 1,154 (529) 50.0 43.5 17.6 22.2
GASD 51.0 56.7 1,183 (421) 58.3 51.8 47.1 11.1

Forums Mention 46.9 6.7 808 (581) 41.7 54.1 41.2 22.2
GASD 80.4 33.9 1,338 (435) 91.7 81.2 73.5 33.3

Twitter Mention 51.0 18.5 669 (408) 75.0 60.0 23.5 22.2
GASD 74.1 39.1 860 (253) 83.3 80.0 67.6 11.1

Monthly models
Search Mention 32.2 42.2 1,075 (538) 33.3 37.6 17.6 11.1

GASD 51.0 64.4 1,054 (435) 50.0 51.8 47.1 44.4
Forums Mention 28.7 10.2 787 (570) 25.0 34.1 20.6 11.1

GASD 77.6 39.4 1,176 (414) 83.3 81.2 67.6 33.3
Twitter Mention 32.9 20.0 606 (402) 16.7 42.4 17.6 0.0

GASD 72.7 52.7 777 (267) 83.3 76.5 70.6 22.2
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types were generally highest for ongoing reviews
and drug safety communications. Not surprisingly,
results on product recalls were lower because many
of these events are devoid of any explicit reaction
or anatomy terms (e.g., “pills chipped or broken in
the packaging plant”), making it difficult to detect
such signals via VoC channels.

7.2. ANOVA and Logit Regression to Examine
Interplay Between Event Types, Channels,
and Models

To examine the effect of event types, channels, and
model types on our three performance metrics within
the 18 model settings, we conducted an ANOVA for
each of the 143 events. Specifically, we employed a
three-way mixed ANOVA design (i.e., split-plot de-
sign). The event type was a between factor (nested
under the event type). The channels and models were
within factors, indicating that for the same event,
signals were repeatedly extracted from different chan-
nel and model combinations. We used the weekly
granularity models for all analyses to manage the
complexity of introducing a fourth variable. Because
recall in this setup was binary (i.e., either the event
was detected or it was not), we used a logistic mixed
model to analyze recall but with the same facto-
rial structure. With S standing for the 143 individ-
ual events, A denoting the event type, B signify-
ing channels, and C representing model types, and
with S/A denoting events within each type, the
structural model describing the sources of variance
becomes

Yijkl � Yt + Ak + S/Al(k) + Bi + B×Aik + B× S/Ail(k)
+ Cj + C×Ajk + C×S/Ajl(k) + B×Cij

+ A×B×Cijk + B×C× S/Aijl(k) + εm(ijkl). (4)

We do not present the results for precision here be-
cause of space constraints; however, the between-
factor event type (A) and the within-factors channels
(B) and models (C) all had a significant effect
on precision (p-values < 0.01). Table 3 depicts the
ANOVA results on timeliness. The main effects of
event types (A), channels (B), and models (C) were
all significant (p-values < 0.01). Interestingly, there
was a significant interaction effect between model
and channel, as shown in Figure 8(a). Among the
three channels, the GASD model obtained the least
gain in the search channel and the most gain in the
forum channel. Finally, signals detected from the
search and forum channels had better timeliness
than those detected from Twitter. This latter result
has interesting implications that we elaborate on
later in Section 8.
As depicted in Table 4, similar to precision and

timeliness, event types (A), channels (B), and models
(C) all had a significant impact on recall (p < 0.01).
Additionally, there was a significant interaction effect
between event type and channel, as well as channel to
model, and a significant three-way interaction among
them. Figure 8(b) illustrates the former interaction
effect with the channel factor being the comparison
basis. As previously alluded to, in general, forums
and Twitter were better than search in terms of recall
rates. However, the relative strength between forums
and Twitter varied depending on event types, with
forums performing better on product recalls, whereas
the opposite was observed for ongoing reviews.

7.3. Impact of Including Sentiment and Signal
Fusion in Mention Model and GASD

To examine the impact of sentiment, we trained a
machine learning sentiment analysis classifier and
ran it on the forum and Twitter data sets to derive

Table 3. The ANOVA Results for Timeliness on the “Weekly” Models in Health Test Bed

Source Partial SS df MS F Prob > F

Model 138,449,409.00 413 335,228.59 5.97 0.000
Between factors
A 5,211,837.86 3 1,737,279.29 4.33 0.006
S/A 50,906,928.30 127 400,841.96

Within factors
B 4,109,855.81 2 2,054,927.90 12.27 0.000
A × B 441,678.48 6 73,613.08 0.44 0.852
B × S/A 26,973,310.20 161 167,536.09
C 1,542,159.67 1 1,542,159.67 23.24 0.000
A × C 6,685.49 3 2,228.50 0.03 0.992
C × S/A 6,767,840.98 102 66,351.38
B × C 945,856.44 2 472,928.22 8.42 0.001
A × B × C 333,606.76 6 55,601.13 0.99 0.438

Residual 4,042,132.29 72 56,140.73
Total 142,491,541.00 485 293,796.99

Note. MS, mean square; SS, sum of squares.
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message-level sentiment polarity scores (Hassan
et al. 2013, Sharif et al. 2014, Zimbra et al. 2018). For
the search channel, the semantic orientation method
proposed by Turney and Littman (2003) and previ-
ously described in Section 3 was adopted. Details
about the sentiment analysis methods utilized appear
in Online Appendix D, along with the full evaluation
results. Here, we summarize the key takeaways.

Figure 9 shows the precision and recall perfor-
mance differences for the 18 models with negative
sentiment polarity included in the models, relative to
the 18 with no sentiment (presented in Table 2).
Positive values indicate higher performance with
sentiment. Looking at the results, the models with
sentiment tended to attain higher precision across the
board. However, often the sentiment models also
resulted in lower recall. The differences in precision
and recall were especially pronounced on the discus-
sion forums, where inclusion of sentiment resulted
in marked improvements in precision and decreases in
recall. Interestingly, forums are the only channel in-
corporated that is primarily for the discussion of
product issues and experiences. Hence, in this chan-
nel, co-occurrence mentions devoid of sentiment in-
formation are more likely to result in false positives
(Sarker and Gonzalez 2015).

Signal fusion was performed by aggregating the in-
dividual channels’ signals in a manner analogous to
the voting scheme used in ensemblemachine learning
(Adjeroh et al. 2014). Details about the fusion method
utilized appear in Online Appendix E, along with the
full evaluation results. Here, we summarize the key
takeaways. Figure 10 illustrates the precision, recall,
and timeliness performance of the fusion methods on
the daily GASD and mention models, relative to the
individual channels’ performance. Compared with
the three individual channels, fusion improved recall
by 3% to 5% versus the best individual channel. In-
terestingly, precision and timeliness both seemed to
move toward the average of the underlying channels
incorporated in the fusion. This can be seen in the
radar charts, where the fusion line is always “near the
middle” on precision and timeliness. As discussed in
the appendix, the other interesting observation per-
tains to recall rates for specific event types. Fusion
seemed to garner a greater lift for certain events, such
as drug safety communications and FDA news alerts.
The results suggest that signal fusion may allow addi-
tional degrees of freedom for VoC listening platform
stakeholders interested in detecting more events in
general, possibly at the cost of less timely and less
precise detection or in better detecting specific types of
events. Additionally, a subset of channels could also
be fused based on detection characteristics that are
more conducive to overall monitoring objectives.

7.4. VoC Listening Case Study—Firm Perspective
The results presented in the main paper and Online
Appendix C to this point are largely from the per-
spective of industry regulators such as the FDA and
NHTSA tasked with examining adverse events re-
lated to a broad array of products spanning multiple
firms. However, VoC listening platform stakeholders
may include other groups such as individual firms. To
examine the efficacy of our framework and proposed

Figure 8. (Color online) (a) Interaction Effect Between Channels and Models for Timeliness; (b) Interaction Effect Between
Channels and Event Types for Recall

Table 4. The Mixed Logistic Regression Results for Recall
on the “Weekly” Models in Health Test Bed

Source df χ2 Prob >χ2

Between factor
A 3 22.23 0.000

Within factors
B 2 110.99 0.000
A × B 6 78.28 0.000
C 1 77.67 0.000
A × C 3 1.86 0.602
B × C 2 11.73 0.003
A × B × C 6 40.82 0.000
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GASD method from a manufacturer’s vantage point,
we present a brief case study from the perspective of
the risk management group at Pfizer. We analyzed 20
products from their portfolio, some of which had
adverse events that transpired during the time period
between 2011 and 2013 (note that some drugs had no
events). The events were associated with two types:
drug safety communications and product recalls. We
ran the mention and GASD models on all Twitter,
search, and forum channel data in our test bed and
computed precision, recall, and timeliness.

Table 5 shows the evaluation results. GASD was
able to detect 76%–84% of the events three to four
years earlier. Risk management groups at such firms
are often willing to have slightly lower precision
(i.e., 33%–60%) for better, timelier recall. Given the
size of their monitoring team, and the relatively fewer

products needing monitoring compared with a regu-
latory agency, such groups are well suited to investi-
gate one or two false alerts for each true positive—a far
better ratio than the mention model. Although not
depicted, GASDagain had lower standard deviations on
timeliness.
Figure 11 illustrates the value of the enhanced

precision, recall, and timeliness enabled by GASD
relative to mention models. Depicted are two Pfizer
drugs for which an FDA event transpired. For each
event, all GASD and mention model alerts are dis-
played (true and false positives). For example, an
adverse event for the drug Revatio was first detected
by GASD 22 months prior to the FDA announcement.
In total, GASD had four true positive and two false
positive alerts for this product. The figure highlights
how signal quality with respect to precision, recall, and

Figure 9. (Color online) Precision and Recall Performance Deltas When Including Sentiment

Figure 10. (Color online) Performance Trade-off Implications of Different Channels and Fusion

Abbasi et al.: User-Generated Signals for Adverse Event Warnings
Information Systems Research, 2019, vol. 30, no. 3, pp. 1007–1028, © 2019 The Author(s) 1023



timeliness can impact practical value in real-world
settings. Relative to GASD, not only does the men-
tion model fail to detect the Revatio event but also it
detects the Zithromax event 18 months after GASD.
Furthermore, it generates more false-positive signals,
which can cause “alert fatigue” over time, impacting
the perceived usefulness of VoC listening capabilities.

7.5. Design Decision Process for
Different Stakeholders

As alluded to, the proposed framework can also help
different stakeholders to identify the best VoC listening
platform design element combination based on their
specific thresholds and preferences. Table 6 presents
an illustration from the health test bed involving
the FDA and Pfizer. In our example, although both
stakeholders have similar threshold requirements
(i.e., minimum precision, recall, and timeliness), they
have differing preference weights for performance
metrics. As a regulator, the FDA may have more
stringent requirements for precision because of the
hefty cost of investigating many signals. Conversely,
Pfizer may place greater weight on recall and time-
liness to proactively address as many adverse events
as possible for monetary and risk mitigation reasons.

We ran ANOVA and logit regression on our two
stakeholder’s event data sets, respectively, and we
estimated marginal means for all the design element
combinations (as described in Section 2). The results
are depicted in Table 6. We find that for most (but not
all) event types, the FDA should use GASD at weekly
or monthly temporal granularities on different chan-
nels. By contrast, for the same event types, the best
alternative for Pfizer is GASD running on the forum
channel at daily intervals. The example indicates how
our framework can take stakeholder inputs to de-
termine the best design elements for signal detection.
Depending on stakeholder constraints, some event
types (e.g., FDA ongoing news in the fourth row) may
not be viable for listening under the current thresholds.
The example illustrates how our proposed design de-
cision process can help stakeholders identify design
elements based on their specific requirements.

8. Results Discussion and Conclusions
Collectively, the evaluation results demonstrate that
event types, channels, and models heavily impact
event signal detection performance. Table 7 sum-
marizes some of the key results pertaining to our two
research questions. In general, GASD provided better

Table 5. Results Across Channels, Model Types, and Temporal Granularities—Pfizer Events

Channel Model

Daily models Weekly models Monthly models

Recall (%) Precision (%) Time (days) Recall (%) Precision (%) Time (days) Recall (%) Precision (%) Time (days)

Search Mention 30.8 22.6 1,502 30.8 34.1 1,519 30.8 31.2 1,350
GASD 30.8 31.0 1,555 30.8 32.7 1,519 30.8 33.5 1,350

Forums Mention 53.8 4.7 1,182 30.8 2.4 718 15.4 20.0 1,185
GASD 76.9 33.3 1,454 84.6 27.3 1,407 76.9 32.9 1,080

Twitter Mention 61.5 6.3 780 46.2 16.7 721 30.8 23.1 192
GASD 84.6 27.4 914 76.9 35.8 903 61.5 60.3 750

Figure 11. Twitter True/False Positives for Monthly GASD and Mention Models on Two Example Pfizer Drugs (Dark Boxes
Denote True Positives; Light Boxes Indicate False Positives)
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precision, recall, and timeliness than the mention
model. GASD’s false-positive rates were two to five
times lower than the mention model. The earlier
detection rates for many events, across models and
user-generated channels (i.e., often one to three years
earlier), is also an interesting result that is consistent
with some recent studies (White et al. 2013, Adjeroh
et al. 2014). Performance was best on event types with
greater salience. In the health test bed, examples in-
cluded reviews and safety communication events,
relative to product recalls. Social media channels
provided higher recall but lower precision than did
search. Within social media, forums and Twitter

each performed better on certain event types (e.g.,
forums attained higher recall for product recall
events in both the health and automotive test beds).
Forums and search also yielded timelier detection
than did Twitter.

8.1. Contributions to Research
We contribute to the emerging IS research on appli-
cation of big data analytics to problems with societal
implications (e.g., Chen et al. 2012, Bardhan et al.
2015, Abbasi et al. 2016, Brynjolfsson et al. 2016).
From a design science perspective, our contribu-
tions include our analysis framework and the GASD

Table 6. Optimal Design Elements for FDA and Pfizer

Stakeholder mP mR mT wP wR wT Event type Data/method/time Prec. Rec. Time Time′ AVG >T

FDA 0.3 0.2 1,000 0.6 0.3 0.1 Drug safety Forum/GASD/month 0.43 0.81 1,172 0.68 0.59 Y
0.3 0.2 1,000 0.6 0.3 0.1 Prod. recall Forum/GASD/week 0.40 0.74 1,590 0.95 0.58 Y
0.3 0.2 1,000 0.6 0.3 0.1 FDA news Search/mention/week 0.50 0.22 1,099 0.64 0.44 Y
0.3 0.2 1,000 0.6 0.3 0.1 Ongoing rev. Twitter/GASD/month 0.92 0.83 363 0.16 0.84 N

Pfizer 0.3 0.2 1,000 0.2 0.4 0.4 Drug safety Forum/GASD/day 0.35 1.00 1,454 0.67 0.73 Y
0.3 0.2 1,000 0.2 0.4 0.4 Prod. recall Forum/GASD/week 0.47 0.47 1,774 0.84 0.62 Y

Table 7. Summary of Key Results for Research Questions

Research question Key results across health and automotive test beds

How effectively can various VoC channels be used
to detect different types of adverse product events
using state-of-the-art signal detection methods?

User-generated content channels can enable timelier detection of events for 50%–80%
of events examined.

Using search/social channels, events can be detected one to three years earlier than
first reports in official event databases used by regulators andmanufacturing firms.

Whereas existing mention models suffer from low precision rates (i.e., < 20% on most
channels) when applied to search/social, the proposed GASD method garnered
false-positive rates that were two to five times lower than those of the mention
models, with precision as high as 50%.

The inclusion of sentiment in themodels enhanced precision, particularly in the online
forums. Given that much of the discussion in these forums encompasses incident-
related keywords, the extent of negative sentiment may constitute an important
filtering mechanism. Similarly, signal fusion can further enhance detection recall
and overall f-measures.

The aforementioned results with respect to recall (i.e., detection rates), timeliness, and
precision (i.e., percentage non-false alarms) were consistent across daily, weekly,
and monthly models in test beds spanning two different industry contexts.

What are the relevant interactions between
channels, event types, and modeling methods,
and what are their implications for the design of
VoC listening platforms?

With respect to event types, performance was best on events where users can
explicitly mention adverse experiences. In the health test bed, examples include
ongoing reviews and drug safety communications. Conversely, drug recalls, which
often stem frommanufacturing, packaging, or labeling issues, were generally more
challenging to detect with search/social channels.

Social media channels examined (i.e., forums and Twitter) garnered higher recall but
lower precision relative to search. Hence, social media has greater signal and noise,
possibly because of the competing effects of greater salience and contextualization
on one hand and credibility implications on the other (e.g., spam).

Forums and search were timelier than Twitter. This is counterintuitive with findings
in other domains such as financial services. The IS literature on crowd-generated
data, user motivations for sharing, and online privacy may offer alternative
explanations for this effect.

Between the two social media channels, forumswere better at detecting product recall
events in the health and automotive test beds, whereas Twitter provided better
detection capabilities for ongoing reviews in the health test bed.

The proposed framework can prescribe the best VoC listening platformdesign choices
for a given set of inputs reflecting the stakeholder’s performance trade-offs.
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method. The existing literature on adverse event
detection has been disparate and fragmented. By
using the crowd-generated data literature as a kernel
theory, our framework provides a holistic lens for
examining key considerations related to VoC listen-
ing. An extensive evaluation across two large test
beds demonstrated the utility and robustness of the
insights generated by our framework and of the GASD
method versus existing basic, machine learning, and
general-purpose methods. Moreover, the framework
can be used to prescribe VoC listening platform design
configurations for a given set of stakeholder inputs
related to performance trade-offs and constraints.

IS scholars have framed the differences between
studies examining prediction versus explanation and
the importance of both (Shmueli and Koppius 2011,
Agarwal and Dhar 2014, Bardhan et al. 2015). Our
analysis framework and the empirical insights pro-
duced also provide opportunities for future theory
development that offers rich explanations. Using
Gregor and Hevner’s (2013) classification, our work
makes contributions to “nascent theory” that is not
yet fully emerged. Three examples are as follows.

1. Timeliness and Channel Usage Motivations: Our
findings regarding the timeliness of search and fo-
rums relative to Twitter are interesting because prior
studies on topics such as the relation between social
media and stock performance found Twitter to be a
stronger lead indicator than forums (Das and Chen
2007, Bollen et al. 2011). As noted in Section 2, the
crowd-generated data literature suggest that chan-
nel usage intentions (e.g., information acquisition,
discussion, and dissemination) might explain the
timeliness differences. From a “customer knowledge
acquisition journey” perspective, it is possible that
internet users sequentially use search to acquire, fo-
rums to discuss, and Twitter to disseminate. Alter-
natively, the earlier use of search and forums, at least
in the health test bed, could be attributable to the rela-
tively sensitive nature of the health domain (Anderson
and Agarwal 2011). Search constitutes a more pri-
vate information-gathering option. However, a sim-
ilar effect was observed in the automotive test bed, a
seemingly less sensitive domain. The sharing litera-
ture notes that peoples’ motives for sharing infor-
mation and insights may be driven by a desire to help
others (Fichman et al. 2011), or for social capital (Wasko
and Faraj 2005), and forums provide a more condu-
cive channel for sharing such information compared
with Twitter. Our findings suggest an opportunity for
studies exploring how certain segments of the pop-
ulation prefer to discuss or disclose their adverse ex-
periences, over time.

2. Recall and Salience of Different Event Types and
Channels: Our product recall event type had low de-
tection rates in the health test bed. However, in the

automotive context, these types of events had the
highest detection rate, likely because of the abundance
of sensory and diagnostic cues. For instance, customer
mentions included references to sounds, smells, vibra-
tions, and warning lights that are more salient and
easily connectable to events. Conversely, dosage errors
at a drug bottling plant are far less likely to yield high-
quality mentions. The crowd-generated data literature
has noted that wise crowds must have sufficient in-
formation and knowledge to provide quality insights
(Surowiecki 2005, Sunstein 2006). Future research
could examine how the amount of knowledge and
available information impacts users’ quantity and
quality of contributions to VoC channels.

3. Precision of Crowd-Generated Data: The viability
of user-generated content channels comes with ca-
veats. Willingness to disclose information via social
media channels, as well as access to and usage of such
channels in general, could result in signal sam-
pling biases (Anderson and Agarwal 2011, Abrahams
et al. 2015). The social media channels examined in
this study garnered higher recall but lower precision
relative to search. Hence, they embody greater sig-
nal and noise as a result of the competing effects of
greater salience on one hand and credibility impli-
cations on the other. Furthermore, because certain
channels such as search and Twitter may have a
degree of separation from event detection tasks in
terms of their primary use cases, sole reliance on such
channels would not be prudent, as noted by re-
cent issues with the Google Flu monitoring system
(Agarwal and Dhar 2014, Lazer et al. 2014). How-
ever, the crowd-generated data literature emphasizes
the importance of having robust signal aggregation
methods (Surowiecki 2005), and other studies have
observed that these issues are preventable by in-
cluding appropriate contextualization mechanisms
(Broniatowski et al. 2014, Brynjolfsson et al. 2016).
Our study touched upon the potential for signal fu-
sion. An important future direction is to explore more
precise signal fusion methods (Adjeroh et al. 2014).
Crowdsourcing methods that can enhance signal-to-
noise ratios may also offer enhanced detection ca-
pabilities (Brynjolfsson et al. 2016). Nevertheless, the
results presented in this note constitute an important
first step in understanding adverse event detection
via crowd-generated data.

8.2. Contributions to Practice
Risk management groups and IT departments can
use the analysis framework and empirical insights to
develop their VoC listening platforms in a more rig-
orous, systematicmanner (Abbasi et al. 2018, Kitchens
et al. 2018). Our framework suggests that practi-
tioners begin by understanding their key monitoring
objectives, including which event types they wish to
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monitor. The ensuing channel and detection methods
investment decisions can be driven by the nuanced
precision, recall, and timeliness implications of their
environment. For instance, we noted earlier how dif-
ferences in the quantity of products being monitored
and available monitoring resources could result in
varying perspectives on precision, recall, timeliness
trade-offs for regulators versus individual firms. Fur-
thermore, the results of our GASD method suggest that
robust event detection methods applied to appropri-
ate channels have the potential to offer timely detec-
tion with manageable false-positive rates, making
enterprise VoC listening feasible. Collectively, by
addressing many of the key impediments to VoC lis-
tening platform adoption and business value (Browne
et al. 2015, Davies 2015), this study has the potential to
enhance outcomes related to practitioner’s VoC lis-
tening platform investment decisions.

8.3. Limitations
Ourwork is notwithout its limitations. Timeliness is a
relative construct: as the status quo changes and the
state of the art advances, what is considered timely
today may not be in the future. Although omni-
channel VoC listening platforms are intended to al-
leviate some of the availability biases inherent in
spontaneous reporting databases, they are not en-
tirely devoid of such biases. Certain products might
be better suited to online monitoring. Moreover, dis-
parities such as literacy and socioeconomic factors
could moderate the frequency and salience of crowd-
generated signals. Consequently, it is conceivable that
precision, recall, and timeliness could vary across firms
or classes of products, creating potential inequities.
From an ethical standpoint, examining adverse event
detection biases attributable to, or amplified by, the
use of machine learning approaches applied to user-
generated content constitutes an important future re-
search direction. Similarly, a deeper exposition into
multichannel listening strategies that examine broader
stakeholder scenarios and consider additional fusion
methods and channels constitutes an important future
direction.
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