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5 Abstract—Adverse event detection is critical for many real-world applications including timely identification of product defects, disasters,

6 andmajor socio-political incidents. In the health context, adverse drug events account for countless hospitalizations and deaths annually.

7 Since users often begin their information seeking and reporting with online searches, examination of search query logs has emerged as

8 an important detection channel. However, search context - including query intent and heterogeneity in user behaviors – is extremely

9 important for extracting information from search queries, and yet the challenge of measuring and analyzing these aspects has precluded

10 their use in prior studies.We propose DeepSAVE, a novel deep learning framework for detecting adverse events based on user search

11 query logs. DeepSAVE uses an enriched variational autoencoder encompassing a novel query embedding and usermodeling module

12 that work in concert to address the context challenge associated with search-based detection of adverse events. Evaluation results on

13 three large real-world event datasets show that DeepSAVE outperforms existing detectionmethods as well as comparison deep learning

14 auto encoders. Ablation analysis reveals that each component of DeepSAVE significantly contributes to its overall performance.

15 Collectively, the results demonstrate the viability of the proposed architecture for detecting adverse events from search query logs.

16 Index Terms—Adverse event detection, search queries, deep learning, auto encoders, query embeddings, user modeling

Ç

17 1 INTRODUCTION

18 ADVERSE event detection has become a critical component
19 of post-marketing surveillance in many contexts
20 including pharmaceutical drugs, children’s toys, and the
21 automotive industry [2]. For instance, adverse reactions to
22 pharmaceutical drugs are responsible for over 10 percent of
23 all hospital admissions [41], resulting in millions of hospi-
24 talizations and over 100,000 deaths annually [44]. The
25 pharmaceutical drug Pradaxa alone has caused 9,000 hospi-
26 talizations, 1,000 deaths, and $650 million in lawsuit settle-
27 ments over the past five years [51]. Similarly, in the
28 automotive industry, Toyota recently settled lawsuits total-
29 ing nearly $6 billion for inadequate rust protection on their
30 trucks, and the unintended acceleration “sticky pedal”
31 fiasco [2]. Such surveillance also has implications for other
32 types of events, including socio-political incidents and natu-
33 ral disasters [27], [45]
34 Detection entails use of signal or anomaly detection
35 methods capable of accurately identifying such events in a

36timely manner (i.e., earlier). In recent years, there has been
37greater focus on employing user-generated content channels
38to detect adverse events [2], with user search query logs serv-
39ing as a major channel [3], [56]. The importance and viability
40of search is largely due to the increased volume and timeli-
41ness of search data – users often begin information seeking
42and reporting with online searches [2], [27]. Consequently,
43the ability to detect events using search query log-based sig-
44nals in an accurate and timely manner has important impli-
45cations for many real-world problems. Given its immense
46potential for garnering situational awareness and listening
47to the voice of the customer, in 2009, Google chief economist
48Hal Varian noted that search trends could help “predict the
49present” [12]. However, search-based event detection has
50been somewhat maligned in recent years. Recent studies
51have shed light on a major challenge – the context problem
52[9], [29]. A high-profile examplewhere lack of proper contex-
53tualization might have been partly responsible was Google
54shutting down their search-based flu trend prediction ser-
55vice after it over-estimated flu levels by nearly 100 percent
56one year [10], [11]. The lower salience of search, due to reli-
57ance on queries that are typically 3-5 words in length or
58shorter, makes it difficult to properly infer query intent [1],
59[27] – people seeking information on flu treatment versus
60those wondering if they should get a flu shot this year [10].
61Further, users’ internet behaviors are diverse – yet existing
62detectionmethods rarely consider user heterogeneity [7].
63We propose a novel deep learning framework calledDeep-
64SAVE (deep learning for search-based adverse event detec-
65tion) for detecting adverse events based on user search query
66logs. DeepSAVE employs an enriched variational autoen-
67coder that incorporates specific provisions to address the con-
68text challenge related to detection of adverse events via
69search, including a query embedding for better representation
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70 of search intent, and user-level modeling to account for
71 heterogeneity.
72 DeepSAVE was evaluated on a rich test bed encompass-
73 ing 104 million user search queries spanning a six year
74 period, coupled with three event databases containing over
75 800 events related to the health and automotive industries.
76 The results reveal that the proposed framework is able to
77 garner enhanced recall and f-measures relative to existing
78 baseline and benchmark methods. Ablation analysis shows
79 that each component of DeepSAVE significantly contributes
80 to its performance, underscoring the efficacy of the pro-
81 posed framework.

82 2 BACKGROUND AND RELATED WORK

83 2.1 Disproportionality Analysis

84 Disproportionality Analysis (DA)methods [36] find potential
85 associations between entities and adverse outcomes. Exam-
86 ples of entities include the drug Pradaxa or Toyota Prius,
87 whereas associated outcomes might be stomach bleeding (in
88 the case of Pradaxa) or the accelerator pedal sticking (in the
89 case of Prius). DAmethods are computed based on a 2x2 con-
90 tingency table encompassing entity and outcome occurrences
91 (see Table 1). DAhas beenwidely used in the past for adverse
92 event detection from search and spontaneous reporting data-
93 bases [2]. Specific examples of DA measures proposed in the
94 literature are Reporting Odds Ratio (ROR), Relative Report-
95 ing Ratio (RRR), Proportional Reporting Ratio (PRR) and
96 Information Component (IC) [8], [36]. As noted, these meas-
97 ures are based on values in Table 1. For instance, ROR is com-
98 puted as (a*d)/(b*c). Szarfman et al. [46] proposed a multi
99 gamma poisson shrinker (MGPS) method that adopts a rela-

100 tively more involved Bayesian approach. For most DAmeth-
101 ods, values above a certain threshold are deemed potential
102 adverse events (i.e., “positives”) [13]. Many DAmethods suf-
103 fer from high variability due to simplified “mention” model-
104 based detection that ignores search context [2]. Consequently,
105 DA methods have typically yielded low precision and recall
106 for adverse event detection [2], [3].

107 2.2 Association Rule Mining

108 Association rule mining (ARM) methods follow a similar
109 intuition to DA methods by attempting to find associations
110 between entities and related potential adverse outcomes.
111 Several measures, such as support and confidence [48] have
112 been proposed to mine association strength between two
113 objects [4], [53]. Given such measures for all entity-outcome
114 tuples, only tuples with measures above a certain threshold
115 are deemed potential events (“positives”). Most of these
116 methods are well-suited for pervasive adverse events (i.e.,
117 ones with high support), but do not work well for events
118 with a weaker signal [48]. To address this problem, some
119 studies have focused onmore robust adverse event detection

120methods [32], [48], [53], but these still suffer from high
121false positive rates and high computational complexity [22].
122Jiet al. [22] proposed two association measures based on a
123fuzzy recognition-primed decision model [21] for mining
124causal relations between drugs and adverse reactions, called
125causal leverage (CL) and exclusive causal leverage (ECL).
126Further, Jin et al. [23] proposed an interestingness measure
127and mining algorithm (EXCLEV) for highlighting unex-
128pected events. These measures have demonstrated strong
129results on electronic databases, but have not been applied in
130the context of search data.

1312.3 Event Mention Classification

132Event mention classification methods use a classifier to cate-
133gorize potential adverse event mentions such as a tweet or
134search query [2], [34]. The filtered mentions (i.e., those cate-
135gorized as relevant) are then input into DA or ARM meth-
136ods. For example, the classifier results may create a refined
137subset of a,b,c,d in Table 1 which can then be used for DA-
138based adverse event detection, thereby potentially alleviat-
139ing false positives and enhancing precision. Numerous
140approaches for classifying event mentions in text have
141been proposed. Sarker et al. [44] trained a Support Vector
142Machine (SVM) classifier to detect whether a tweet contains
143an ADR. They applied their method on a dataset encom-
144passing 6K manually annotated tweets. Lee et al. [31] pro-
145posed a method for ADR detection in tweets using a
146Convolutional Neural Network (CNN) and region embed-
147dings. Huynh et al. [19] applied CNNs followed by Recur-
148rent Neural Networks (RNN) with and without attention
149mechanism to two labeled datasets. Event mention classifi-
150cation methods attempt to better contextualize and refine
151entity-outcome mention tuples, thereby implicitly examin-
152ing search/query intent [27]. However, these approaches
153do not consider user-level characteristics [7] such as hetero-
154geneous search and nuanced querying patterns. Moreover,
155they still rely on DA methods for the final event detection
156signals. As we later demonstrate empirically in our evalua-
157tion section, these limitations make event mention classifica-
158tion techniques less ideal for adverse event detection.

1592.4 Data Mining Techniques for Twitter Event
160Detection

161Twitter is a major channel for social-media based detection
162of real-world events. Hashtags have made it easier to find
163and extract tweets related to a specific event, upon which
164data mining techniques can be applied. Several such meth-
165ods have been proposed in recent years that consider event
166detection as a temporal stochastic process. Here we discuss
167a few exemplars selected based on their performance as
168reported in prior studies [3], [17]. pyMABED [39] uses
169anomaly detection to detect spikes in event mentions which
170can be visualized in a system for manual inspection. SEDT-
171Wik [37] examines tweet hashtags to find bursty segments
172which are clustered to find important events. Precision is
173increased by making use of an external data source (Wikipe-
174dia) to verify events. TwitterTopics [20] aggressively filters
175tweets based on length and content. It then applies hierar-
176chical clustering on the refined set of tweets and finally
177prunes results by weighting. PeakLabel [3] uses a spike

TABLE 1
2x2 Contingency Table

Outcome of Interest Other Outcomes

Entity of Interest a b
Other Entities c d

a, b, c, and d represent the frequency of occurrence.
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178 detection heuristic to identify events from Twitter mentions.
179 Despite empirically performing well on social media-based
180 event detection tasks, it remains unclear how well these
181 techniques can perform on search data. For instance, while
182 these aforementioned methods perform analysis (e.g.,
183 anomaly detection or cluster analysis) at the word or tag
184 level, important factors such as word sense and context are
185 omitted from the analysis pipeline. Hence, some of the
186 same intent and user heterogeneity limitations mentioned
187 earlier may apply. Moreover, many of these methods are
188 based on sophisticated pipelines that rely heavily on the
189 manual feature/model engineering paradigm.

190 2.5 Auto Encoders and Dimensionality Reduction

191 Dimensionality reduction methods are a family of unsuper-
192 visedmethods that dealwith learning an efficient compressed
193 representation of the data that is well-suited for easy recon-
194 struction of the input. Principal component analysis (PCA)
195 [57] and Singular Value Decomposition (SVD) [16] are two
196 seminal methods that have been successfully used for data
197 compression, anomaly, and event detection [40]. In recent
198 years, Auto encoders (AE) [18], which are a type of unsuper-
199 vised neural networks, have been proposed for this task. They
200 consist of two components, an encoder that converts the input
201 into a compressed representation, and a decoder that converts
202 the compressed representation back to the original input.
203 Reconstruction loss is used to back propagate the error and
204 enable learning. Initially, auto encoders were used for
205 dimensionality reduction [18], but recently, they have been
206 applied to anomaly detection tasks [43], [58]. After training an
207 auto encoder, if a test instance gives high reconstruction loss
208 (i.e., the network cannot reconstruct the test input accurately
209 relative to some threshold), it is considered an anomaly.
210 Denoising auto encoders (DAE) [50] are a special type of auto
211 encoder where a small amount of noise is intentionally added
212 to the input as a regularization strategy. By learning on noisy
213 input, the goal is to train models robust to small perturba-
214 tions. Variational auto encoders (VAE) [28] constrain the com-
215 pressed representation to follow a prior distribution (e.g.,
216 Gaussian). The encoder compresses the input into two com-
217 pressed representations: mean and variance which are joined
218 to get a single representation. Kullback-Leibler divergence is
219 used to constrain the compressed representation to match the
220 prior distribution. Adding this distribution constraint can act
221 as a regularization strategy. It also allows use of more princi-
222 pled anomaly thresholds based onprior distributions. Despite
223 encompassing several attractive properties, to the best of our
224 knowledge, auto encoders have not previously been used for
225 adverse event detection.

226 2.6 Deep Learning for Search

227 There has been increased research interest in applying neural
228 networks to word (word2vec) [35] and sentence embeddings
229 [30]. These embeddings represent words and sentences in a
230 high dimension such that there are semantic relationships
231 between them. A few extensions of word2vec [26] have also
232 been proposed for modeling search queries. Zamani et al.
233 [60] and Le et al. [30] proposed a method of averaging word
234 embeddings to create embeddings for short pieces of text
235 such as queries and sentences. Query2vec [26] uses ideas

236from word2vec and skipgram modeling to propose several
237different schemes for creating query embeddings, including
238querygram, clickgram, and sessiongram. Query embeddings
239could help better account for search context factors such as
240query intent, yet have not been employed in prior adverse
241event detection studies.

2422.7 Research Gaps

243Based on our review of prior work, we have identified two
244important research gaps:

245� Lack of Attention to Search Context–Salience is critical,
246yet often elusive with user-generated content channels
247such as search query logs [1]. Failure to contextualize
248user-generated content can have dire consequences
249for event detection [56]. Nevertheless, effective contex-
250tualization methods for adverse event detection
251remain elusive. The intention behind queries is one
252critical consideration [60]. Further, users may internal-
253ize and vocalize adverse experiences in diverse ways,
254depending on various factors. Prior work examining
255user-generated channels has mostly not considered
256such heterogeneity.
257� Dearth of Parsimonious Models for Detecting Adverse
258Events–Previous studies have largely relied on aggre-
259gate-level DA or ARM methods applied atop either
260basic or machine-learning classifier-based mention
261models [10]. As we later demonstrate empirically,
262such methods, which are applied uniformly across
263entities in a sequential “pipeline” manner, are unable
264to learn the nuanced characteristics of specific poten-
265tial adverse events since they fail to consider the inter-
266play between mention instances and aggregate-level
267events.

2683 PROPOSED FRAMEWORK: DEEPSAVE

2693.1 Generic Definition of Problem and Solution
270Space

271Suppose we have externally defined sets e1; e2; . . . ; em 2 E
272entities and o1; o2; . . . ; on 2 O outcomes for a given problem
273domain. For instance, if attempting to detect adverse drug
274events, entities would be all relevant drugs and outcomes
275the set of all possible adverse reactions. For automotive
276events, entities would be vehicle makes and models,
277whereas outcomes would include vehicular defects that
278could manifest after purchase. This results in a set of possi-
279ble entity-outcome tuples eioj 2 E �O. The objective is to
280examine potential event signals to identify, as timely as pos-
281sible, each tuple eioj 2 A � E �O, where A is the set of all
282true adverse events, which is defined by external criteria
283and ex ante unobservable aside from a known subset A0 �
284A that may be used for training.
285In each time period t, users u1; u2; . . .uk each perform
286queries qut1; qut2; . . . qutl, which may contain a potential event
287signal eioj by either individually or collectively mentioning
288both entity ei and outcome oj. Following the standard
289approach adopted in the disproportionality analysis literature
290[55], [56], evidence for an actual event may be provided by
291entity-outcome tuples that are anomalous (i.e., disproportion-
292ate) in their occurrence relative to other tuples, both within
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293 and across timeframes, or relative to themselves from prior
294 time periods [2]. At time t, some metric of strength for each
295 potential signal eitojt is compared against its past occurrences
296 eisojs 8s < t as well as with other event signals at the current
297 time extoyt 8ex2Eoy2O. Based on this comparison, an anomaly
298 score ateioj is assigned to each signal eioj 8ei2Eoj2O that quan-
299 tifies the abnormality of the signal. All signals are ranked
300 based on anomaly scores, and the top p% adverse event sig-
301 nals (highest anomaly scores) are considered as our potential
302 true positives. These are measured against a ground truth set
303 of known true events from future times tkþ1; tkþ2; . . . ; tn to
304 gauge performance.

305 3.2 DeepSAVE Components

306 Fig. 1 depicts our DeepSAVE deep learning framework for
307 adverse event detection. It consists of multiple components
308 designed to address the aforementioned gaps in the literature:

309 � Query Embedding for the query intent aspect of search
310 context. This module combines search queries with
311 clickstream data to create query embeddings for bet-
312 ter intent inference. In particular, the query embed-
313 ding attempts to disentangle relevant from irrelevant
314 queries, and further categorize relevant queries into
315 different types.
316 � User Modeling to account for the user heterogeneity
317 aspect of search context. This component of the frame-
318 work uses hierarchical Bayesian modeling to generate
319 a novel user embedding to identify and account for
320 diversity in how users seek information via search.
321 Collectively, the user modeling accounts for diverse
322 user content generation and consumption patterns.
323 � Enriched Variational Auto Encoder for parsimonious
324 modeling of adverse events. The auto encoder takes
325 compressed representations of the aforementioned
326 components and attempts to reconstruct them with a
327 prior distribution constraint. To enhance perfor-
328 mance, the decoder is enriched with query and user
329 embeddings to better align reconstruction loss with
330 valid adverse event signals.

331 3.3 Overview of DeepSAVE

332 We begin with a high-level overview of DeepSAVE before
333 diving further into the three components: enriched varia-
334 tional autoencoder, query embeddings, and user modeling.

335As noted, adverse event detection is about detecting an
336event signal. As shown in Fig. 1, DeepSAVE embodies this
337core intuition. Longitudinal search data is divided into n
338sliding windows of size s. For each window wi, queries
339with entity-outcome tuples are extracted. Since a user’s
340search intent might manifest across multiple queries, we let
341the entity and outcome terms occur in different queries
342within a time period T. Each query is associated with its
343text, a user id, and a set of URLs visited within t seconds
344after entering the query. Relevant queries are passed
345through two different components of DeepSAVE that
346extract information for tuples and create input matrices for
347an entity with outcomes as row vectors.
348The query embedding and user modeling modules col-
349lectively extract two key matrices that are used as input for
350the variational autoencoder. The query embedding module
351focuses on derivation of meaningful representations of
352queries for user intent inference. Since a single outcome can
353be associated with multiple queries, we use a recurrent neu-
354ral network to aggregate the query embeddings for each
355outcome before inserting them into vectors in the query
356embeddings matrixMq.
357The usermodeling component extracts individual, as well
358as aggregated measures for users belonging to each tuple.
359These values are intended to capture users’ information for-
360aging behavior. Data generated by the user modeling mod-
361ule is used to create a user feature + user embedding matrix
362Mu. Ultimately, we are interested in finding entity-outcome
363tuples (i.e., rows) of the feature + user embedding matrix
364Mu. The querymatrix is used for enrichment (i.e., regulariza-
365tion strategy) analogous to a denoising autoencoder [50].
366The two matrices generated by the user modeling and
367query embedding components are each passed through sep-
368arate Feedforward Neural Networks to extract representa-
369tions that are concatenated and non-linearly aggregated
370together by another Feedforward Neural Network to form a
371single compressed representation which is constrained to
372follow an isotropic Gaussian distribution. By upsampling,
373this representation is converted back into the originalMu. As
374noted, the matrix for query embeddings is not reconstructed
375since it is only used to help the auto encoder reconstruct the
376corematrixMu, which is used to identify adverse events.
377DeepSAVE is trained and tested using a sliding time
378series window approach. Given test window wiþ1, training
379employs a cumulative growing window spanning w0 to wi.

Fig. 1. Proposed deep learning framework for adverse event detection.
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380 Consistent with prior autoencoders, reconstruction loss is
381 used to train the VAE [28], resulting in a fully unsupervised
382 method for adverse event detection (in the sense that no
383 apriori event labels are used). For each test window wiþ1,
384 reconstruction loss is calculated for each outcome row in
385 the entity-outcome text matrix. Entity-outcome tuples with
386 reconstruction loss above a certain threshold are considered
387 potential adverse events. Details about the enriched VAE,
388 query embedding, and user modeling appear in the remain-
389 der of the section.

390 3.4 Enriched Variational Auto Encoder

391 Variational auto encoders (VAEs) have shown great promise
392 for efficiently compressing input data into specific distribu-
393 tions. These distributions in turn exhibit statistically sound
394 properties for threshold-based anomaly detection – for
395 instance, only 5 percent of data lies outside two standard
396 deviations in a Gaussian distribution. In order to leverage
397 these properties, DeepSAVE uses a VAE as its core anomaly
398 detection engine. The algorithmic intuition guiding our
399 enriched VAE is that since adverse-event related searches are
400 less common, when properly accounting for query intent and
401 diversity in user search behavior, theywill exhibit anomalous
402 patterns relative to regular searches in a time series modeling
403 context. More specifically, as we train the enriched VAE for
404 each time window, it learns the distribution of entity-out-
405 come row and entity-level matrix association patterns –
406 whenever an adverse event occurs, if its entity matrix falls
407 outside the learned data distribution due to spikes in certain
408 entity-outcome searches, those entity-outcome time periods
409 will be flagged as anomalous signals [58]. The enriched VAE
410 leverages query embedding andusermodeling-based enrich-
411 ment to the input as a regularization strategy to account for
412 query intent and user heterogeneity, thereby enabling more
413 accurate reconstruction lossmeasurement.
414 As alluded to in our framework overview, DeepSAVE
415 trains on a set of entity matrices, each consisting of all possi-
416 ble outcomes as rows. Therefore, each row can also be called
417 an entity-outcome tuple. The query embedding and user
418 modeling components (described later in Sections 3.3 and
419 3.4) are used to generate two input matrices: Mq, Mu, for the
420 enriched VAE. From relevant queries, data for these matri-
421 ces is generated and passed through separate feedforward
422 neural networks and global max pooling layers to extract
423 compressed global representations for each matrix. For
424 instance, the compressed query embeddings representation
425 is a global representation that encompasses query intent for
426 the input entity as a whole, as well as the individual out-
427 comes. These representations are non-linearly aggregated
428 together before being applied with a Gaussian constraint
429 that acts as a regularization strategy. Aggregation is done in
430 order to obtain a single global representation from all com-
431 ponents, which is used to reconstruct the feature + user
432 embedding matrix.
433 Formally, let u1; u2; . . . ; un 2 Mu denote the outcome
434 rows of an entity matrix for user features and embeddings
435 and b1; b2; . . . ; bn 2 Mq for query embeddings. Row vectors
436 for each matrix are of different sizes su, sb respectively. We
437 pass each matrix through a separate feedforward neural
438 network that compresses the width of the matrix while
439 keeping the number of rows the same. Since the embedding

440and feature information is present in the columns of the
441matrices, we start by compressing them using a feedfor-
442ward neural network with weightsWm

CM ¼ sðbm þM �WmÞ; (1) 444444

445

446where the number of units m in the neural network layer
447is much smaller than the number of columns in the matrix
448M. s is the activation function and � is the matrix product.
449For each entity matrix Mq, Mu, we consider the output
450CM as the compressed representation. Let Cu, Cq denote the
451compressed representations of feature and query matrices
452respectively. Then, the aggregated compressed representa-
453tion is given by

C ¼ sðbc þ ðCconcatÞ �Wc: (2) 455455

456

457Cconcat is the concatenation of the compressed representa-
458tions which is given by

Cconcat ¼ Cq � Cu: (3) 460460

461

462Given C, we convert it into two more compressed repre-
463sentations for mean and variance of the constraining distri-
464bution (a Gaussian distribution in our case)

Zm ¼ fðWzu � Cconcat þ bconcatÞ (4)

466466

467

Zs ¼ fðWzs � Cconcat þ bconcatÞ (5)

469469

470

Z ¼ zm þ zs � �: (6) 472472

473

474In Equation (6), z is sampled using a ”reparametrization
475trick” [28] that enables backpropagation in the network. The
476� � Normal(0, 1) parameter adds a random node in the net-
477work thus allowing for the gradients to flow back. Finally, Z
478is upsampled using another feedforward neural network to
479reconstruct the feature matrix. As noted, we do not recon-
480struct the query matrix since it is only used for enrichment of
481the autoencoder. Let p be the part of auto encoder that is
482responsible for compressed (encoder) and q be the part that is
483responsible for reconstruction. The encoder-decoder network
484is trained end-to-endwith loss function given in Equation (7).

Lðu;f;Mu;MqÞ ¼ EðMu;MuZÞ
�KLðqfðZjMu;MqÞjjpuðZÞÞ

(7)
486486

487

EðMu;MujZÞ ¼ jMu � ðMujjZÞjq (8)

489489

490

KLðqjjpÞ ¼ pðMuÞ � ðlogðpðMuÞ � logðqðMuÞÞÞ: (9) 492492

493

494Equation (7) contains two terms, the first term is the
495reconstruction loss given by E in Equation (8), while the sec-
496ond term is the Kullback Leibler divergence (9) which quan-
497tifies the misfit between the posterior distribution of Z and a
498unit Gaussian. u are the parameters of the encoder network
499pwhile f represents the parameters of decoder network q.
500As noted, training reconstruction loss is only calculated
501across the entire feature matrix Mu. However, during test-
502ing, we calculate the reconstruction loss for each outcome
503row (entity-outcome tuple) in the feature + user embedding
504matrix (Eq. (10)). This represents the anomaly score for the
505signal; if it is higher than a threshold thrsh, we consider it
506an adverse event signal.
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8 e 2 Entities 8 Vo 2 Mue

EðVo; Vo� Þ ¼ jVo � Vo�j1 > thrsh

thrsh ! AE Signal for Vo and e:

(10)
508508

509

510 3.5 Query Embeddings

511 Query intent is an important contextual consideration for
512 search-based detection models [10], [29]. For instance, the
513 query “does adderall give headache relief” contains an
514 entity (adderall) and outcome (headache), but is obviously
515 not referring to a potential adverse event since the intent is
516 to ask a clarification question as a prospective user of Add-
517 erall, and the context of the search is focusing on potential
518 benefits of the entity (i.e., relief).
519 To mitigate this issue, we build a neural embedding for
520 query intent detection (query embedding). The key intuition
521 in our query embedding is to infer latent intent based on
522 observed post-query clickstream behavior for a subset of
523 users. For instance, if a user goes to a number of health sites
524 after a query, it is more likely a signal than if they visit
525 celebrity news sites. To this end, a classification model
526 trained on this query-clickstream interplay is used on the
527 auxiliary task of determining the category relevance of sites
528 for post-query clicks, using the model’s inner representation
529 to derive our query embedding. Details are as follows.
530 For this task, we require a high-level taxonomy of web-
531 sites by topic to categorize what type of information a user
532 clicked after a query. For our system, we used DMOZ, a
533 crowd-sourced hand-labeled directory of thousands of web-
534 sites commonly employed by researchers for such tasks
535 [14], [24]. We categorize queries as relevant if at least one of
536 the URLs visited within a time window after the query has
537 a category germane to the entity. For instance, if detecting
538 adverse drug events, “health” categories in DMOZ [61]
539 would be considered relevant. Using this procedure, we
540 build a labeled dataset of query-relevance pairs and train a
541 Transformer [49] model for query categorization. Trans-
542 formers were used since we want to focus on query intent,
543 and such models use self-attention effectively to capture
544 context. The inner representation (i.e., last linear layer of the
545 Transformer) is used as the query embedding. As shown in
546 Section 5.3, this query embedding significantly improves
547 our event detection capabilities.
548 Fig. 2 shows the query classifier used to derive our query
549 embedding. Words along with their positional encoding are

550input to a Transformer architecture which converts them
551into dense vector representations called embeddings. These
552embeddings are fed to a multi headed attention layer which
553focuses on the important information in the query and
554assigns attention weights to each word. This allows us to
555attend to the important parts of the query during learning.
556The attention weights are finally used with a feed forward
557neural network which converts everything into a 1D vector
558representation qo which is a global representation of the
559query. qo is input to a softmax classifier for classification.
560The outputs qo, which are the output representation of the
561final layer encompass semantic meaning of the input queries
562in a high dimensional space and constitute our query embed-
563ding. In the evaluation section, we empirically show that
564these embeddings are semantically meaningful and help in
565user intent inference, thereby reducing false positives.
566Formally, given a sequence of words w1; w2; . . . ; wn 2 q in
567a query where wi is a vector for word embedding [35] and
568pi is a vector of positional embeddings [49], the Transformer
569creates three separate embeddings from the input which are
570called s (words of sentence/query), k (key), v (values)
571embeddings. These are gathered in a single matrix to give
572us S;K; V . An attention operation is performed on these
573three matrices to give us weights for each word.

AttentionðS;K; V Þ ¼ softmax
SKTffiffiffiffiffi
dk

p
� �

V: (11)
575575

576

577In Equation (11), dk is the dimension of the key embed-
578dings. In order to further enhance the performance of atten-
579tion, a multi-headed attention mechanism is used which is
580described by the following equation.

MultiHeadðS;K; V Þ ¼ Concatðhead1; . . . ; headhÞW 0

where headi ¼ AttentionðSWS
i ;KWk

i ; VW
V
i Þ:

(12) 582582

583

584WS
i ;W

k
i ;W

V
i are the weights for each matrix. After apply-

585ing the multi-headed attention to get attention weights for
586each word, a feed forward neural network is applied to
587aggregate embeddings in S into a 1D vector representation
588qo which is used with a softmax layer for classification. qo is
589called the query embedding. Finally, qo is passed to a feed-
590forward layer followed by a softmax layer for classification.

L ¼ WQ � qo þ b (13)

592592

593

Pclass¼c ¼ eLc

ðPj¼0;n e
Lj
: (14)

595595

596

597We maximize the cross entropy loss function to train this
598model. Given u as parameters of the model, loss function is
599given by

Lðq; uÞ ¼ logðPcjw1; w2; . . . ; wnÞ: (15)
601601

602

6033.5.1 Analysis of Query Embeddings

604In the same vein as other neural embeddings, we extract the
605outputs of the Transformer qo and use them as our query
606embedding. To illustrate the potential value of the proposed
607embedding, similar to prior embedding studies, we examined

Fig. 2. Transformer classifier used to derive query embeddings.
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608 the semantic composition of closely related groups of queries
609 to see how effectively they captured diverse query intent
610 information. We performed this analysis by analyzing the
611 nearest neighbors of queries and clustering them via k-Means
612 to find patterns.
613 Table 2 shows results from a partitional cluster analysis
614 using k-Means, applied on query embeddings derived from
615 searches related to a health context (i.e., where the entities
616 are pharmaceutical drugs and outcomes of interest are drug
617 reactions). The first column depicts the relevance or intent of
618 querieswithin the cluster, whereas the second column shows
619 sample queries for each cluster. Italics are used to highlight
620 certain intent-related facets of each cluster. Looking at the
621 table, if the goal were to identify adverse drug events, Clus-
622 ters 3 and 4 seem especially relevant since users are search-
623 ing for information or clarification about adverse drug
624 reactions. Some queries from Cluster 2, which seem to be
625 broader preliminary searches, might also relate to adverse
626 events. In contrast, Cluster 5 seems to be highly specialized
627 searches from prospective users of the drug entities. Simi-
628 larly, Cluster 6 is seemingly asking about the possible value
629 of a given drug from pre-experience users. Cluster 1 contains
630 queries completely irrelevant to the adverse drug event
631 entity-outcome tuple context. It is also worth noting that
632 the resulting intent clusters appear to be differentiated on
633 the basis of not only entity and outcome composition of the
634 queries, but also their stop/function word presence (e.g., is,
635 can, how, if). By leveraging a classifier that connects queries
636 to subsequent URL clickstream behavior, the proposed
637 query embedding is able to identify subtle intent patterns.
638 As alluded to, later in the evaluation section, we show that
639 inclusion of query embeddings in DeepSAVE enhances over-
640 all event detection precision and recall. Moreover, our query
641 embedding also offers better performance relative to alterna-
642 tive query classification approaches.

643 3.6 User Modeling

644 User heterogeneity is an important aspect of search [7]. Dif-
645 ferent users seek information in different ways. For instance,

646continuing with our health example, if we consider drugs as
647entities and reactions as outcomes, some users are paranoid
648about their health and frequently seek medical information
649for drugs and reactions (i.e., hypochondriacs) [54]. Similarly,
650people takingmultiple drugs are at greater risk of drug-drug
651interactions, which may result in differences in search pat-
652terns. Given the anomaly identification nature of adverse
653event detection, accounting for heterogeneity in user charac-
654teristics is important for disentangling signal from noise.
655However, many of these user characteristics are not observ-
656able, but rather latent factors that influence user behaviors.
657By taking into consideration how these latent characteristics
658vary across a heterogenous population, we can significantly
659improve detection of adverse events from user searches.
660Because we need to estimate latent, unobserved characteris-
661tics that are heterogenous across users, we turn to hierarchi-
662cal Bayesian models. Bayesian techniques have been used
663extensively in social science literature to create explanatory
664models that assume observed behaviors are, in part, func-
665tions of unobserved heterogenous traits or opinions such as
666aptitude or utility [62]. Thesemodels are ideal for this type of
667inference because they allow for the structured distribution
668of latent factors across users to be estimated simultaneously
669with the impact they have on discretely observed behaviors
670[5]. Bayesian techniques have been used previously in
671adverse event detection, but not, to our knowledge, in this
672way. For instance, the Multi-Item Gamma Poisson Shrinker
673algorithm uses Bayesian estimation to hierarchically model
674reporting ratios for adverse events as draws from a popula-
675tion of true, unknown values [15]. Another study utilizes
676prior specifications within the Bayesian framework to incor-
677porate domain knowledge into the predictive model [33].
678Bayesian network structures have also been used for estimat-
679ing conditional probabilities for predicting adverse events
680and medical diagnoses [6], [38]. Because of its various
681strengths, there is increasing interest in incorporating Bayes-
682ian techniques into sophisticated predictivemodels [52].

6833.6.1 User Embeddings

684Similar to how query embeddings signify the semantic
685meaning/intent of queries, we develop user embeddings to
686represent the individualized search behaviors of users.
687Accordingly, we develop a hierarchical Bayesian model [5]
688to identify heterogeneity in users’ latent information seek-
689ing propensities for various categories of entities and out-
690comes. Specifically, the model predicts what type of site a
691user will visit (i.e., healthcare or other) after searching for
692each category of drugs and reactions. We then use the user-
693specific coefficients for each drug and reaction in our pre-
694dictive model to represent latent user characteristics. For
695example, in our adverse drug event detection example con-
696text, assume some users are hypochondriacs who search for
697and seek information from healthcare sites for certain drugs
698and reactions very frequently (a latent user characteristic).
699These users are not likely to provide a good signal for
700adverse event detection. Another group of more normal
701users, who may provide a more reliable signal, may search
702for drug or reaction terms less frequently and visit fewer
703health related sites when they do. When a user in this sec-
704ond group does experience an adverse reaction, searches

TABLE 2
Clusters Encompassing Different Types of Queries

Example Clusters Sample Queries within Clusters

1. Not relevant to
the entity

urex iphone dvd ripper, battery portalac,
chicago metra train schedule, ibuprofen
coupon

2. Broad preliminary
information searches

will prozac work, can cefadroxil treat
chlamydia, can you abuse subutex, can
cromolyn be substituted for prednisone

3. Specific adverse
outcome searches

bactrim and sudden death, accutane and
headaches, neostigmine bromide for sexual
anixety, cisplatin delayed nausea

4. Clarification seeking
searches

why albuterol causes jitteriness, how do i
fix fentanyl withdrawal, how does elavil
effect pain management

5. Specialized
question-related
searches

if allergic to tylenol what can i take
instead, if allergic to penicillin would it
not rid strep, if i take progesterone and
feel nauseated

6. Value proposition and
effectiveness of entities

abilify for depression reviews, abreva
cold sore treatment reviews, garcinia
camboviaweight loss review
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705 for a drug-reaction tuple, and visits health-related sites to
706 obtain information, the VAE can use the coefficients repre-
707 senting such latent characteristics to adjust signal strength
708 and emphasize information from these more reliable users,
709 significantly improving performance.
710 Fig. 3 illustrates how the Bayesian model quantifies this
711 intuition in the context of our health example. Each Gaussian
712 distribution represents a particular category of drug (entity)
713 and reaction (outcome). Each user is represented along each
714 category distribution by a beta value that indicates their
715 placement relative to others – a user’s vector of betas across
716 entity and outcome categories can shed light on behavior pat-
717 terns. Users lying on the mean of the distribution are average
718 users that might not exhibit any atypical properties. How-
719 ever, users on the high end of the distribution might express
720 patterns like hypochondria or high drug-drug interactions.
721 The input to the Bayesianmodel is categories of entity and
722 outcome tuples. The output is the likelihood of the user visit-
723 ing a target category website (e.g “Health” if working with
724 adverse drug events). The model employs logistic regression
725 where the weights are estimated by allowing the coefficients
726 to vary randomly by users according to a Gaussian distribu-
727 tion with mean and standard deviation freely determined by
728 the model. Formally, let Sjk denote a binary variable indicat-
729 ing if a user k visited a particular site type on their jth search.
730 LetCjk be the search category for an entity-outcome tuple for
731 user k on jth search. Then, the model is defined by the fol-
732 lowing equation.

P ðSjkCjk 8 iÞ ¼ 1

ð1þ exp�ðb0k þ
P

i¼1;n bik � Sjk þ ejkÞÞ
(16)

734734

735

ejk � Nð0; s2Þ; bik � Nð �aik; s2
kÞ 8 i ¼ 0 . . .n: (17)737737

738

739 In the above equations, i denotes the total number of cat-
740 egories for entity-outcome tuples, j denotes the total obser-
741 vations of a user, and k denotes the total number of users.
742 After training, we are only concerned with the values of b,
743 which we call “user betas”. For every user u, we create a
744 vector Vu signifying our user embedding, containing beta
745 values for the user for every entity and outcome category
746 that the user belongs to. Alongwith aggregated user level fea-
747 tures f which will be discussed in an upcoming section, we
748 add user embeddings for all users of an input entity-outcome

749tuple into a matrix representation in DeepSAVE, which we
750denote asMu.

7513.6.2 Analysis of User Embeddings

752Although user embeddings consist of user betas which are
753latent constructs, we conducted a partitional cluster analysis
754to dive deeper into the patterns these embeddings exhibit.
755For all users in our corpus, we clustered them into k regions
756via k-means and converted their user embedding vector
757into 2 dimensions using t-distributed stochastic neighbor
758embedding (TSNE) for visualization.
759Fig. 4 depicts the clusters created using the aforemen-
760tioned process. The partitioning confirms that there are
761indeed separate regions of users based on their user embed-
762dings. On manual inspection of cluster centroids, we found
763that the four clusters corresponded to users with different
764beta values, indicating different behaviors. For instance, users
765in the first cluster have high beta values for both drug and
766reaction categories, implying frequent medical searches,
767while cluster 4 corresponds to users with only high drug beta
768values. On the other end, cluster 3 contains users with small
769beta values, i.e users with searches that infrequently lead to
770health sites. Cluster 2 contains somewhat “average” users –
771those with beta values closer to the mean. These embeddings
772are intended to enhance the regularization capabilities of the
773VAE in DeepSAVE, as described later in the evaluation sec-
774tion. They are also reconstructed by the VAE.

7753.6.3 Aggregated User Features

776Consistent with prior adverse event detection studies involv-
777ing user-generated time series data, we use window-level
778aggregated time series data to account for natural spikiness
779and smooth out data sparsity [2], [3]. Entity-outcome co-
780occurrences are converted into aggregate-level features as
781depicted in Table 3. We rely on a small set of meaningful fea-
782tures, some of which have been used in previous literature
783[56], [59]. These features, which provide a small but dense
784representation of users’ collective search behavior, are input
785to the VAE via the feature + user embedding matrix Mu and
786are reconstructed at the output. In DeepSAVE, their respec-
787tive reconstruction errors are used as the basis for detecting
788adverse events.

Fig. 3. Intuition for Bayesian model used to create user embeddings.

Fig. 4. Cluster analysis of user embeddings.
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789 Formally, For each user u, let Qu be the set of all queries
790 that user performed and Qu

eioj
2 Qu be the set of queries that

791 user performed related to the entity-outcome tuple eioj. Let
792 fu

eiojt
be the frequency with which the user u performs

793 queries related to eioj on day t within a time window W .
794 Let cq be the number of target category websites visited after
795 query q 2 Qu, and dq be the duration of time spent on those
796 sites. Table 3 shows formulas for user features. Feature Vu

797 represents user embeddings. We hypothesize that along
798 with other user features, reconstructing user embeddings
799 forces the VAE to learn the interplay between users’ benign
800 and anomalous search behavior. As we empirically show in
801 the results, these features significantly enhance detection
802 performance.

803 4 EVALUATION

804 4.1 Test Bed

805 Two types of data were incorporated in our evaluation test
806 bed. The first were three event databases comprising over
807 800 verified adverse events from the US Food and Drug
808 Administration (FDA), Health Canada, and the US National
809 Highway Transportation Safety Agency (NHTSA). The
810 FDA and Health Canada databases comprise adverse drug
811 events, whereas the NHTSA database are adverse automo-
812 tive events. For each event, the databases provided a
813 detailed description of the event along with a timestamp
814 indicating when they internally discovered the incident. We
815 included all events appearing from 2013 through 2018.
816 Table 4 summarizes the event database. As noted earlier, in
817 the FDA and HealthCanada contexts, entities are drugs
818 whereas in the NHTSA data they are vehicle makes and
819 models (e.g., ”Toyota Prius”). Since the same entity can be
820 associated with multiple adverse events at different points

821in time, in Table 4, unique entities signify the set of non-
822redundant entity appearances in the event data sets. Poten-
823tial entity-outcome tuples are all unique entity-outcome tuples
824appearing in the search data at least once related to these
825unique entities. These tuples constitute the total hypothesis
826space for DeepSAVE and comparison models - all true/false
827positives and negatives are a subset of these tuples.
828The second type of data in our test bed set encompassed
829user-generated data provided by Comscore. Comscore
830maintains a panel encompassing over 2 million users. All
831search queries and clickstream behavior for these users are
832tracked, along with user demographics. This data affords
833opportunities for examining search context considerations
834such as intent and user modeling. Table 5 summarizes the
835panel-based search and clickstream data. The total entity
836queries signify the number of search queries performed by
837the users in the panel that encompass an entity term related
838to the events databases described in Table 4. The entity-query
839URLs visited are the total number of URLs visited as a result
840of these queries. In the evaluation, we applied DeepSAVE
841and comparison methods on this user panel data to detect
842events in the event database.

8434.2 Metrics

844We adopted four evaluation metrics commonly employed
845in prior ADE detection studies [55], [56]: precision, recall, f-
846measure, and timeliness. Precision and recall measure the
847ability to accurately identify adverse events. Recall denotes
848detection rate, while precision is a measure of false positive
849rate, with implications for alert fatigue. F-measure is the
850harmonic mean of precision and recall. Timeliness is how
851much earlier an adverse event can be detected, in compari-
852son to the point in time when the event is timestamped in
853the official event database. Since our task entails identifying
854adverse events earlier, when calculating recall and preci-
855sion, positives were only those signals that occurred prior to
856the first-report date for that particular event in the gold
857standard database. More formally, precision and recall
858were computed as TP/(TP+FP) and TP/(TP+FN), respec-
859tively, where TP were all events detected earlier than their
860database timestamp.
861For timeliness, suppose we have n events e1; e2; . . . ; en
862under consideration with each event having a timestamps
863td1; td2; . . . ; tdn, the date it was officially defined as a true
864adverse event (by the FDA or relevant organization), and
865timestamp tr1; tr2; . . . ; trn, the initial inception (e.g., drug
866release) date of the entity or the inception date of our query
867dataset, 1/1/2012, whichever is later. Letm reflect the num-
868ber of events the algorithm identifies prior to their official

TABLE 3
Formulas for User Features

Feature Formula

Average Freq. fu
ave ¼ ððPt2W fu

eiojt
ÞÞ=ðjW jÞ

Frequency Variation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t2W ðfu
eiojt

� fuaveÞ=ðjW j � 1jÞ
q

Weighted Sum
P

t2W ðfu
eiojt

=ðmaxðt 2 WÞ � tÞÞ
Entity Query Prop. jQu

eioj
j=jQu

ei
j

Outcome Query Prop. jQu
eioj

j=jQu
oj
j

Web Time
P

q2Qu dq

Target Category URLs
P

q2Qu cq

Tuple Freq.
P

t2W fu
eiojt

User Embeddings Vu

TABLE 4
Adverse Event Data Statistics

Data Set No.
Events

Unique
Entities

Potential Entity-Outcome
Tuples

FDA 426 210 62,351
HealthCanada 234 131 19,160
NHTSA 290 79 19,168

TABLE 5
User Search Query Data Statistics

Search Data Statistics Health & Automotive

Unique Users 2,357,854
Total Entity Queries (health & automotive) 75,522,063
Entity Queries/Month 1,161,877
Average Entity Queries/User 32.03
Query-related URLs Visited 535,580,255
Average Entity URLs/Month 8,239,696
Average Entity URLs/User 227.15
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869 recognition date, where m 	 n, with timestamps ta1; ta2;
870 . . . ; tam representing when the algorithm would have pre-
871 dicted the event based on available data. The timeliness
872 metric is measured as the average time between detection
873 by the algorithm and official recognition, normalized by the
874 length of time from entity/data inception to official recogni-
875 tion of the event i.e ðPi¼1;...;mðtdi � taiÞðtdi � triÞÞ=m 2 ½0; 1
.
876 Normalization was performed in order to provide a more
877 equal footing to events officially recognized at various
878 times. However, we can also calculate the timeliness in
879 months/days by removing the normalization factor.
880 Consistent with prior studies [2], [3], for each such identi-
881 fied positive signal, a determination of true/false positive
882 (i.e., TP or FP) was made using a two-stage approach. First,
883 the key entity and outcome keywords appearing in the sig-
884 nal were automatically compared against those appearing
885 in the gold standard database descriptions. If the similarity
886 was below a certain threshold, the signal was automatically
887 rejected as a false positive. For those above a threshold, an
888 independent domain expert examined a sample of docu-
889 ments pertaining to the signal (e.g., the underlying queries
890 and URLs) to determine relevance.

891 4.3 Implementation Details

892 For DeepSAVE’s query embeddings, Transformer [49] was
893 used with 128 units in the hidden layer, resulting in 128-
894 dimensionsal query embeddings. For the user modeling
895 module, we mapped all outcomes and entities into a few cat-
896 egories. A Bayesian model was trained per each entity-
897 outcome category tuple, across all relevant users. Each
898 Bayesianmodel included six beta values per user: entity cate-
899 gory, outcome category, entity and outcome category, other
900 drug entities, other outcome categories, and other entity and
901 outcome categories. The feedforward neural networks used
902 in the architecture had 64 layers each except for at the com-
903 pressed layer where we only had 16 units in the layer. Mean
904 Absolute Error was used as the reconstruction loss measure

905to train and test the VAE. For the parameters, we tried out
906different learning rates, number of layers, and window sizes
907and kept the best performing ones. They impact of parame-
908ters is also discussed in Section 5.2. For DeepSAVE and all
909comparison methods, precision, recall, and f-measure per-
910formance on the top 10 percent reactions with highest error
911were reported in the main results table, although we also
912plotted these measures across a broader range of thresholds
913to show performance domination.

9144.4 Comparison Methods

915As noted, similar to DeepSAVE, the top n% reactions with
916highest DA measures, ARM measures, and AE reconstruc-
917tion errors were kept for testing against the gold standard
918database. For the classification-based comparison methods
919(SVM, CRNN, CNN, FASTTEXT), classifiers were trained
920and tuned on a labeled adverse drug mention data set [44].
921However, these techniques couldn’t be run on the automotive
922test bed due to lack of labeled training data. CNN [19] and
923CRNN [19] were run using a window size of 5. For CRNN, a
924single layer with 128 recurrent units was employed. FAST-
925TEXT [25] used 100 sizedword vectors with a window size of
9265 and 0.1 learning rate. AE [18] was run using a 3 layer neural
927network with 8 units in the compressed layer and 128 in the
928remaining ones. For DAE [50], we added small random
929Gaussian noise (0.01*N(0,1)) to the input. For VAE, we used
930the same architecture as AE but added a Gaussian constraint
931on the compressed layer. For twitter event detection meth-
932ods, we used the default parameters.

9335 EXPERIMENTAL RESULTS

934In all results tables, f-measure, precision, and recall are
935reported as percentages. The ”Timely” column denotes the
936average timeliness of the true positives, as described in
937Section 4.2. Table 6 presents the experiment results for Deep-
938SAVE and 22 benchmark methods. DeepSAVE significantly

TABLE 6
Summary Results for DeepSAVE

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING



939 outperformed all benchmark methods on f-measure and
940 recall on all three data sets. On thesemetrics, DeepSAVEper-
941 formed at least 6 to 10 percentage points better than all com-
942 parison methods. Most notably, recall rates were two-three
943 times higher than many comparison techniques. In terms of
944 precision, DeepSAVE was close to other methods on the
945 FDA and NHTSA test beds. DeepSAVE’s far superior true
946 positives with relatively decent false positive rates is crucial
947 since recall is considered essential for adverse event detec-
948 tion [2]. In general, auto encoders and twitter event detection
949 methods produced better results relative to DA, association
950 rule, and classifier techniques. Interestingly, entity-outcome
951 classifiers coupled with DA methods did not work well.
952 Overall, the results underscore the effectiveness of Deep-
953 SAVE for search-based adverse event detection relative to
954 DA, association rule, classifier, and standard VAE methods.
955 In the case of NHTSA, supervised entity-outcome classifiers
956 couldn’t be run due to lack of labeled automotive training
957 data. Therefore, there are no results for Disproportionality
958 analysis atopMention Classifier.

959 5.1 Effect of Threshold

960 Fig. 5 depicts the effect of test reconstruction loss error on the
961 performance of DeepSAVE versus the best benchmarkmeth-
962 ods in each comparison category on the FDA data. Results
963 on NHTSA and Health Canada were similar. As we increase
964 the threshold for reconstruction error, thereby making the
965 number of positive signals generated fewer and more selec-
966 tive, f-measure steadily increases for DeepSAVE while it
967 decreases or remains constant for many comparison meth-
968 ods. This can be seen by looking at the recall and precision
969 figures – recall for DeepSAVE is at least 25 points higher
970 than other methods while precision is at most 5 points
971 lower than VAE. Since recall is markedly higher and preci-
972 sion is slightly lower at every threshold, but with a steep
973 increase for higher thresholds, DeepSAVE’s f-measures
974 dominate top comparison methods across a wide range of
975 event detection thresholds. These results suggest that
976 DeepSAVE’s performance gains are robust across a wide
977 range of thresholds.

978 5.2 Parameter Impact

979 Like any deep learning model applied to time series data,
980 the DeepSAVE framework includes a few parameters such
981 as the learning rate (lr) of the model, number of convolu-
982 tional layers, and the time series sliding window size for

983analysis (in months). In order to examine the impact of
984different parameter values on performance, we examined
985various combinations of layers (1,2,3), learning rate
986(0.001,0.0005,0.0001), and window size (4,6,8) on our three
987data sets. While in Table 6 we report lr = 0.0005, layers = 1,
988and window size = 4, in general, we found that the total
989impact on f-measures across these 27 parameter settings
990was less than 2 percentage points on all three data sets. To
991illustrate this point, we show the results on the NHTSA
992events, Fig. 6, where the greatest variance was observed. As
993depicted, DeepSAVE’s performance was fairly robust to
994changes in learning rates and number of convolutional
995layers. With respect to sliding window size, the 4 and 6
996month windows garnered fairly similar f-measures (i.e.,
997within 1 percentage point). Increasing the window size to 8
998months did reduce the f-measure by about two points for a
999couple of settings. Though not depicted in this figure, time-
1000liness values for all these settings also remained similar, as
1001did the precision and recall profiles, across all three event
1002data sets. Collectively, these results suggest that DeepSAVE
1003is robust across an array of parameter settings.

10045.3 Ablation Analysis

1005DeepSAVE encompasses novel query and user embeddings.
1006In order to analyze the additive impact of each component,
1007Table 7 shows the performance of the model as we incre-
1008mentally added components on top of a baseline VAE for
1009the FDA, Health Canada, and NHTSA event data. Adding
1010either query embeddings or user embeddings gives a 3 to
101113 point lift in f-measure and augments recall by upto

Fig. 5. Effect of reconstruction error threshold on f-measure, precision, and recall performance. Twitter Event Detection methods were omitted since
they don’t have thresholds.

Fig. 6. Impact of parameters on DeepSAVE F-measure.
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1012 50 percent. These results highlight the notion that provi-
1013 sions for better understanding query intent and user hetero-
1014 geneity are invaluable for better contextualized search-
1015 based event detection. Lastly, combining both embeddings
1016 in the feature matrix gives us the final results for DeepSAVE
1017 with a further increase in recall, precision and f-measure.
1018 The results in Table 7 underscore the fact that all compo-
1019 nents of DeepSAVE contribute to its overall performance.

1020 5.3.1 Performance of Query Embeddings

1021 In order to further examine the effectiveness of the pro-
1022 posed query embeddings, we compared it against three
1023 other query embedding methods: mean embeddings [30],
1024 query2vec [26], and using LSTM instead of Transformers in
1025 our query classifier. We did this by replacing the query
1026 embedding matrix in DeepSAVE with embeddings from
1027 the selected methods on the FDA event data. The results
1028 appear in Table 8. DeepSAVE query embeddings outper-
1029 form both other methods on all four metrics, with perfor-
1030 mance lifts of 2 to 12 percentage points. These results,
1031 which were also observed on NHTSA and Health Canada,
1032 support the value of the proposed query embeddings for
1033 search-based event detection.

1034 5.3.2 Effect on AutoEncoder

1035 The above results show the effectiveness of the query and
1036 user embeddings from a performance metric perspective.
1037 Digging deeper into their inner workings, Fig. 7 depicts
1038 their effect on reconstruction loss (error) distribution for the
1039 enriched VAEs. We illustrate this using the entity matrices
1040 for 4 randomly chosen drugs in the data. The figure shows
1041 the original error (loss) distributions as well as those after
1042 adding the query embedding atop the VAE. Without the
1043 query embeddings, the VAE reconstruction error is much
1044 more compressed. After adding the query embeddings, the
1045 error distribution becomes less compressed, better reflecting
1046 the intended Gaussian shape. By smoothing out the Gauss-
1047 ian distribution, the query embeddings help reduce the
1048 number of false positives incurred at different thresholds.

1049Similar to the query embeddings, we further analyze the
1050viability of our user embeddings by examining the VAE
1051reconstruction loss error distributions on the same drug enti-
1052ties (bottom of Fig. 7). The stark difference between error dis-
1053tributions in VAEs with and without the user embeddings is
1054clearly visible. After the inclusion of user embeddings atop
1055query embeddings, the error distribution still follows a
1056Gaussian shape, but becomes less compressed, withmore of a
1057long tail towards the right (higher loss). This is advantageous
1058since by dispersing the distribution of losses, the resulting
1059model is able to more easily discern high reconstruction loss
1060cases (i.e., possible true positives). Uponmanual inspection, it
1061was found that most of the points that are on these long tails
1062were indeed true positives thus highlighting the efficacy of
1063user embeddings in improving model performance. These
1064results speak to the intended regularization benefits of adding
1065query and user embeddings to the enrichedVAE.

10665.4 Case Study: Stock Movement Events

1067The three data sets used in our evaluation encompass
1068adverse events. However, search context factors such as user
1069heterogeneity and query intent may manifest in other event
1070detections settings as well. In order to examine the effective-
1071ness of DeepSAVE in such contexts, we compared its perfor-
1072mance against two of our top benchmark methods -
1073pyMABED and SEDTWiK - on a stock movement event
1074detection task. Following prior studies that dealt with event
1075detection in stocks [47], our events were stocks publicly
1076traded on the NASDAQ, S&P 500, and Russell 2,000 which
1077had attained significant gains or losses over a certain period
1078of time. Hence, the entities were companies and outcomes
1079were upward or downward stock price movement. We
1080defined our events as stocks which gained or lost 20 percent
1081within a 6-month time period. These values were chosen
1082based on prior literature, and since these values resulted in a
1083quantity of events and entities that were in the same range as
1084our adverse event data sets. Overall, the stock movement
1085event data set was comprised of 330 events related to 100
1086unique entities, spanning the time period 2016-2018.
1087Similar to the approach described in Section 4.1, we used
1088our existing search log corpus to derive entity queries. Exam-
1089ples of queries include ‘Amazon has poor support’ and
1090‘shorting Tesla stock’. For DeepSAVE and the comparison
1091methods, we then derived potential event signals and com-
1092pared them against the events to compute precision, recall, f-
1093measure, and timeliness. Table 9 shows the results for Deep-
1094SAVE and the two aforementioned comparison benchmark
1095methods. It is worth noting that the overall results were
1096higher since such macro time-period stock movement events
1097are generally considered easier to detect relative to adverse

TABLE 7
Ablation Analysis of DeepSAVE Components

FDA Health Canada NHTSA

Method Fmeas Prec Rec Timely Fmeas Prec Rec Timely Fmeas Prec Rec Timely

VAE 25.5 24.5 26.7 0.63 14.8 32.2 9.6 0.68 20.4 13.2 44.7 0.70
VAE+Q 30.4 24.8 39.2 0.62 25.8 19.6 37.7 0.78 35.9 25.2 62.4 0.74
VAE+U 34.5 26.1 51.2 0.72 24.9 19.9 33.3 0.75 35.7 25.7 58.2 0.77
DeepSAVE 35.2 26.6 52.0 0.73 26.0 21.2 33.8 0.74 37.0 27.1 58.3 0.74

TABLE 8
Ablation Analysis for Query Embeddings

Method Fmeas Prec Rec Timely

Mean Embeddings [30] 28.3 22.1 39.5 0.65
Query2Vec [26] 28.7 23.2 37.8 0.63
LSTM Embeddings 34.2 26.7 47.6 0.68
DeepSAVE Q.Embed. 35.2 26.6 52.0 0.73
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1098 events. Nevertheless, DeepSAVE attained a 10-30 percentage
1099 point lift in f-measure and recall, and also garnered higher
1100 precision. The case study further underscores the impor-
1101 tance of holistic methods for search-based event detection
1102 that take into account search context factors.

1103 6 CONCLUSION

1104 In this paper, we proposed DeepSAVE, a novel deep learn-
1105 ing framework for adverse event detection from web search
1106 query logs. DeepSAVE uses an enriched variational autoen-
1107 coder comprising of novel query embeddings for enhanced
1108 contextualization via intent clarification and user-level
1109 modeling to account for heterogeneous adverse experiences.
1110 Evaluation on three event databases in the health and
1111 automotive domains encompassing nearly 1,000 adverse
1112 events reveals that DeepSAVE garners enhanced recall
1113 and f-measures relative to existing state-of-the-art adverse
1114 event detection methods. Given the lack of prior work
1115 on application of novel autoencoder architectures for this
1116 problem, the results contribute to the nascent body of
1117 knowledge on advanced machine learning methods for
1118 adverse event detection. DeepSAVE has important practi-
1119 cal implications. For example, it could be used to detect
1120 adverse events in various critical contexts such as disease
1121 surveillance, socio-political incidents, product defect iden-
1122 tification, and e-commerce. While we focused mostly on
1123 adverse event contexts, our case study on financial events
1124 suggests that the proposed method might also be suitable
1125 for more general-purpose event detection problems. We
1126 believe this study signifies an important first step toward
1127 these directions.
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