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Psychometric measures reflecting people’s knowledge, ability, attitudes, and personality traits are critical

for many real-world applications, such as e-commerce, health care, and cybersecurity. However, traditional

methods cannot collect and measure rich psychometric dimensions in a timely and unobtrusive manner.

Consequently, despite their importance, psychometric dimensions have received limited attention from the

natural language processing and information retrieval communities. In this article, we propose a deep learn-

ing architecture, PyNDA, to extract psychometric dimensions from user-generated texts. PyNDA contains

a novel representation embedding, a demographic embedding, a structural equation model (SEM) encoder,

and a multitask learning mechanism designed to work in unison to address the unique challenges associated

with extracting rich, sophisticated, and user-centric psychometric dimensions. Our experiments on three

real-world datasets encompassing 11 psychometric dimensions, including trust, anxiety, and literacy, show

that PyNDA markedly outperforms traditional feature-based classifiers as well as the state-of-the-art deep

learning architectures. Ablation analysis reveals that each component of PyNDA significantly contributes to

its overall performance. Collectively, the results demonstrate the efficacy of the proposed architecture for

facilitating rich psychometric analysis. Our results have important implications for user-centric information

extraction and retrieval systems looking to measure and incorporate psychometric dimensions.
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1 INTRODUCTION

Psychometrics is concernedwith themeasurement of knowledge, ability, attitudes, and personality
traits. With the increased importance of analytics at the micro-level [10], including understanding
and prediction of individuals’ behaviors [4], accurate and timely measurement of psychometrics
has become of paramount importance. In cybersecurity contexts, self- efficacy and threat percep-
tions are critical psychometric dimensions known to be strong indicators of end-user suscepti-
bility to phishing attacks [5]. Similarly, financial literacy and psychological traits are important
antecedents for downstream financial behaviors [24]. In e-commerce, satisfaction with a website’s
browsing experience is a crucial lead indicator for purchase propensity and e-loyalty [18]. In health
settings, psychometric measures, including health numeracy, subjective literacy, and perceptions
of trust and anxiety related to physicians, have been shown to have a profound impact on vari-
ous health and wellness outcomes such as future doctors’ visits and all-around well-being [8, 22,
53]. Hence, accurately and efficiently measuring psychometrics inherent in user-generated con-
tent can provide an important information access refinement with positive implications for many
real-world tasks, including information retrieval, mobile text analytics, and behavior modeling [4,
20, 25].

Psychometric data collection efforts have traditionally relied on survey-based methods admin-
istered on a monthly or quarterly basis. Effectively collecting and measuring relevant constructs
in a timely and unobtrusive manner has proven elusive in real-world settings [27]. In recent years,
machine learning methods for natural language processing (NLP) have been successfully applied
to certain psychometric dimensions such as sentiment and emotion [11, 29]. Such NLP techniques,
which analyze user-generated text and automatically score them along the target variable, afford
opportunities for real-time, passive monitoring andmeasurement. However, several gaps and chal-
lenges remain:

• Many rich psychometric dimensions remain underexplored:Whereas numerous NLPmethods
have been proposed for sentiment and emotion, other aspects such as attitudes, perceptions,
and characteristics have received limited attention [6]. It is unclear how effectively NLP
methods can tackle these novel dimensions.

• User-centric versus task-centric modeling: Most prior NLP classification objectives and
datasets have been arranged around a given task (e.g., sentiment polarity). Psychometric
dimensions such as attitudes and perceptions are very individualized, with multiple inter-
related target variables of interest associated with each person. There is an opportunity for
psychometric NLP methods to incorporate provisions for user-centric modeling.

• Demographic-sensitive modeling: Factors such as age, race, gender, and education can have
a profound impact on various psychometric measures (e.g., literacy, trust, anxiety) [22].
These differences can be amplified in user-generated text [61]. Several recent studies suggest
that machine learning models that fail to properly control for demographics are prone to
inaccurate generalizations [21]. Psychometric NLPmethods that are accurate across diverse
demographic populations are a necessary and understudied research area.

• Paucity of available text: Several recent NLP studies have examined “short text” contexts
such as Twitter [57] and news articles [37, 59]. User-generated text associated with psy-
chometrics often appears in similarly sparse environments such as comment boxes, text
messages, and microblogs, necessitating methods capable of learning patterns from limited
linguistic cues.

In order to address these gaps, we propose a novel deep learning architecture for psychometric
NLP. Our architecture incorporates provisions to address the aforementioned issues, including
novel representation and demographic embeddings and a structural equation modeling (SEM)
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encoder, coupled with a robust multitask learning method. The proposed architecture was eval-
uated on a rich health test bed encompassing three datasets composed of pertinent psychometric
dimensions—such as health numeracy, literacy, trust, anxiety, and drug experiences—related to
a set of demographically diverse users. The results reveal that the proposed architecture is able
to garner markedly better classification accuracy, precision, and recall rates across psychometric
dimensions, relative to baseline and benchmark machine learning NLP methods. Ablation
analysis shows that each component significantly contributes to overall performance, thereby
underscoring the efficacy of the proposed architecture.

2 RELATEDWORK

Psychometric dimensions are measures of latent constructs related to knowledge, ability, attitudes,
perceptions, and personality traits [52]. These dimensions are known to be important antecedents,
mediators, and moderators for important humanistic outcomes and behaviors [38]. For instance,
in the health context, health literacy is a subjective reflection of one’s “knowledge pertaining to
health care issues” [45]. The trust in doctors that patients place and anxiety visiting doctors are ad-
ditional examples of health-related psychometric dimensions [22, 54]. All three of these, and other
related dimensions, have been shown to impact future health outcomes including well-being [45].
However, effectively collecting andmeasuring such covariates in a timely and unobtrusive manner
has proven elusive in real-world settings [27]. Many psychometric dimensions require 10 or more
survey responses [14, 46], making them less feasible in persistent measurement environments.
Recent studies have suggested that NLP methods applied to user-generated content might offer a
complementary or alternative mechanism for measuring psychometric dimensions [27]. However,
whereas NLP has a longstanding tradition for certain dimensions such as sentiment polarity (i.e.,
positive, negative, neutral) and select emotions (e.g., happiness, anger) [11, 33, 65], many impor-
tant psychometric dimensions have been largely unexplored. Given the potential implications of
psychometrics for information retrieval, as noted in the introduction, one of the goals of this study
is to demonstrate the efficacy of NLP methods for measuring rich psychometric dimensions from
text. Accordingly, in the remainder of this section, we review relevant NLP literature.

2.1 Feature-Based Classifiers for NLP

Feature-based text classifiers—a special type of NLP technique—have demonstrated their effec-
tiveness in extracting certain commonly studied psychometric dimensions, such as sentiment and
emotions, from user-generated text [11]. These techniques rely on supervised machine learning
methods that leverage rich linguistic features to classify texts into several types (e.g., emotion
classes or sentiment polarities) and/or intensity levels (e.g., high vs. low). Past studies have shown
that supervised machine learning methods, such as Support Vector Machines [48], Naive Bayes
[43], and logistic regression [28], are especially effective for text classification. An important area
of focus for feature-based classifiers is to find the ideal feature set for representing the richness
of the texts in order to enhance classification performance. This is particularly critical since lin-
guistic feature spaces can be massive, encompassing lexical measures, parts of speech, alternative
syntactical patterns, domain-specific and general-purpose semantic lexicons, and pragmatic infor-
mation. Consequently, several NLP feature ranking techniques have been proposed, such as FSH
and FRN [3, 23], to enrich and enhance feature engineering efforts. In contrast, recent studies have
found that deep learning affords opportunities for automatic feature engineering [13]. However,
deep learning often works better when applied to large-scale texts [57, 59]. Thus, feature engineer-
ing and domain adaptation intuitions from feature-based text classification may complement deep
learning when facing data paucity in diverse linguistic environments such as those encountered
for psychometric NLP.
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2.2 RNNs for NLP

Recurrent neural networks (RNNs) selectively pass information across sequence steps while pro-
cessing sequential data one element at a time [23]. In order to deal with the gradient vanish-
ing problem that commonly appears in long-term sequence learning processes, two major gating
mechanisms have been proposed: gated recurrent units (GRUs) [13] and long short-term memory
(LSTM) [32]. The basic idea is to use a set of gates to regulate the values (through a weighted sum
activation function) flowing into each hidden state so that the gradients are refrained from approx-
imating to zero. These types of RNNs have been shown to be effective for many NLP tasks (e.g., [33,
49]). In the context of psychometric NLP, RNNs could capture long-term linguistic dependencies
[12]—which are typically hard to capture through manual feature engineering—in user-generated
texts to improve classification performance for previously underexplored psychometric dimen-
sions of interest.

2.3 CNNs for NLP

Convolutional neural networks (CNNs) utilize layers with convolving filters to apply to local fea-
tures [36]. Originally invented for computer vision, CNNs have recently demonstrated superior
performance on several NLP tasks (e.g., [16]). An interesting line of work is to learn character-
level CNN embeddings to accommodate possible spelling errors and prefix and suffix information
[60]. In addition, Kim et al. [35] used a CNN trained on top of pretrained word vectors for sentence-
level classification [19]. Deriu et al. [19] used an ensemble of CNNs with distant supervision and
a random forest classifier for message-level sentiment analysis. Coneau et al. [17] proposed a very
deep CNN (VD-CNN) to accommodate character-level information for public text classification. In
summary, CNNs could be particularly useful for text classification of user-generated psychometric
content, which often contains significant misspellings and domain-specific expressions.

2.4 Hybrid Architectures

Several articles (e.g., Cho et al. [13]) have discussed application areas for RNNs and CNNs in NLP.
For example, CNNs are well suited for mining local features regardless of position information,
whereas RNNs are good at extracting long-term sequential information. Due to their complemen-
tary characteristics, researchers often utilize a hybrid architecture comprising RNNs and CNNs to
solve complex NLP classification tasks. For example, Zhou et al. [62] used CNNs to learn phrase-
level features through a convolutional layer and fed the sequence of such higher-level represen-
tations into RNNs to learn long-term dependencies. Inferring psychometric measures may benefit
from hybrid architectures capable of accommodating rich and diverse linguistic patterns appearing
in user-generated texts.

2.5 Multitask Adversarial Learning

Multitask learning [63, 64] is an effective approach for improving the performance of a single
task by learning multiple tasks jointly. Recent progress in deep learning has offered novel
opportunities for implementing multitask learning in a general neural-based framework: learning
shared representations across multiple tasks to facilitate feature sharing, and finally mapping
to individual tasks via a task-specific predictor. The shared representation could utilize a hybrid
architecture, perhaps from lower-level word representations [15] to higher-level contextual
representations such as RNNs [49]. This general framework has recently been shown to work well
for NLP tasks including sequence tagging [58], text classification, and discourse analysis [40]. A
notable improvement of the neural-based multitask learning framework is to adopt adversarial
learning [30] to ensure the shared representations only contain common and task-invariant
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Fig. 1. PyNDA architecture diagram.

information. Such approaches have worked well for several NLP tasks [40] and may also be
effective in the context of psychometric NLP.

2.6 Summary of Research Gaps

Based on our review of relevant literature, we have identified three major research gaps. First,
although psychometric dimensions such as sentiment and emotion have been studied extensively,
there has been limited focus on other rich psychometric dimensions such as trust, anxiety, and
literacy. Research examining such psychometric dimensions is of theoretical and practical impor-
tance. For instance, effectively capturing such psychometric dimensions necessitates consideration
of user-centric modeling techniques capable of considering interrelated dimensions in unison, as
well as demographic-sensitive modeling. Second, little work has been done to fuse the rich linguis-
tic resources, methods, and domain knowledge developed in the feature-based NLP classification
literature with novel deep learning architectures. Given the complexity of psychometric utter-
ances and paucity of available text, such fusion could facilitate enhanced accuracy by leveraging
rich linguistic feature representations in concert with robust deep learning schemes. Third, hybrid
deep learning architectures encompassing CNNs, LSTMs, andmultitask learningmechanisms have
been underexplored. Prior work suggests these approaches offer complementary benefits such as
pattern detection from local features, consideration of long-term dependencies, and inclusion of
the interplay between closely related user-level psychometric dimensions. In the ensuing section,
we propose an architecture expressly designed to address these gaps.

3 PROPOSED ARCHITECTURE: DEEP LEARNING FOR PSYCHOMETRIC NLP

Figure 1 depicts our proposed PyNDA Psychometric NLP Deep Learning Architecture, which en-
compasses four base neural nets that are fused via a concatenation layer that feeds into dense lay-
ers and also leverages a novel multitask learning mechanism. Each component of the architecture
is intended to address the aforementioned research gaps, thereby resulting in enhanced text clas-
sification capabilities for psychometric dimensions:
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• A character embedding convolution neural network (CNN) for capturing fundamental spa-
tial syntactic patterns in user-generated texts, at the character and prefix, suffix, and root
levels.

• A bidirectional long short-term memory (Bi-LSTM) recurrent neural network that uses a
novel underlying parallel representation embedding that encompasses an array of topic, sen-
timent, emotion, and syntactic linguistic representations. This embedding leverages feature
subsumption methods capable of ingesting large, diverse feature spaces and refining them
into a small set of rich attributes.

• A second Bi-LSTM that incorporates a novel demographic embedding scheme intended to
better capture nuances and norms inherent across different gender, race, and age segments.

• A structural equation model (SEM) Encoder that allows inclusion of related “secondary” at-
titude and behavior information to allow superior classification of key target psychometric
dimensions.

• A novel multitask learning mechanism that enables better inclusion of joint information
between related target psychometric dimensions.

In the remainder of the section, we describe each component of the proposed architecture.

3.1 Character Embedding

In order to consider the morphological patterns (e.g., prefix, suffix and misspelling) of the in-
put text, we build a character-level embedding using convolutional neural networks. Such neural
network-based embeddings have shown great promise on a wide variety of tasks [31, 37, 47]. The
input for the character embedding is a sequence of encoded characters. Each character is repre-
sented as a one-hot (or one-over-l ) vector д(x ) ∈ [1, l]→ R, where l is the size of the alphabet.
The alphabet used in our model consists of 70 characters, including 26 English letters, 10 digits,
33 other characters, and the new line character. The convolutional kernel function is defined as
f (x ) ∈ [1,k]→ R, where k is the size of the filters. Given the stride ofd we can get the convolution
h(y) ∈ [1, [l − k + 1/d]]→ R between f (x ) and д(x ) as follows:

h(y) =
k∑

x=1

f (x ) ◦ д(y ◦ d − x + c ), (1)

where c = k − d + 1 is an offset constant. This convolutional layer is later connected to a max-
pooling layer, defined as:

h(y)maxpoolinд =maxkx=1 д(y ◦ d − x + c ). (2)

The embedding process uses two convolutional layers, each followed by a max pooling layer. The
resulting embedding is fed into two fully connected layers, which are then concatenated with
layers from other embeddings for the finally psychometric variable classification.

3.2 Representation Embedding

Examination of rich psychometric dimensions pertaining to diverse user demographics could pose
challenges for deep learning methods, particularly in situations involving limited user-generated
text. Recent work has shown that rich feature-based methods can often attain text classification
performance levels that are comparable to simple deep learning architectures [65], whereas
combining the two can often yield enhanced performance [33, 51]. Accordingly, we propose
a novel representation embedding that utilizes a rich array of parallel feature representations
that capture a bevy of semantic and syntactic information at varying granularities, coupled
with grid-based subsumption. The main intuition behind the proposed embedding is similar to
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Table 1. An Example Illustrating Major Parallel Representations Employed

in the Representation Embedding

Representation Example

S
e
m
a
n
ti
c

Word
these sawbones are just awful ! escitalopram caused me to gain
weight and feel depressed. i ’m better off using google.

Hypernym
these DOCTOR are just awful ! escitalopram caused me to gain
UNIT_OF_MEASUREMENT and PROPERTY depressed. i ’m
better off EXPLOIT google.

Sentiment
these LPOSLNEG are just LPOSHNEG ! escitalopram
LPOSLNEG me to LPOSLNEG LPOSLNEG and LPOSLNEG

depressed. i ’m HPOSLNEG off LPOSLNEG LPOSLNEG.

Affect
these sawbones are just NEGATIVE-FEAR ! escitalopram
caused me to gain weight and feel SADNESS. i ’m better off using
google.

Named Entities
these sawbones are just awful ! escitalopram caused me to gain
weight and feel depressed. i ’m better off using ORGANIZA-

TION.

Domain Lexicons
these sawbones are just REACTION ! DRUG REACTION me
to gain REACTION and feel REACTION. i ’m better off using
google.

Word & Sense
these sawbones|_|01 are just awful|_|01 ! escitalopram
caused|_|02 me to gain|_|05 weight|_|02 and feel|_|01 de-
pressed. i ’m better|_|03 off using|_|04 google|_|01.

Word & NE
these sawbones are just awful ! escitalopram caused me
to gain weight and feel depressed. i ’m better off using
google|_|ORGANIZATION

POS
DT NNS VBP RB JJ. NN VBD PRP TO VB NN CC VB JJ. PRP

VBP JJR RP VBG NNP.

S
e
m
a
n
ti
c

Misspellings
these sawbones are just awful ! escitalopram caused me to gain
weight and feelMISSPELLING. i ’m better off using google.

Word & POS

these|_|DT sawbones|_|NNS are|_|VBP just|_|RB awful|_|JJ

!|_|. escitalopram|_|NN caused|_|VBD me|_|PRP to|_|TO

gain|_|VB weight|_|NN and|_|CC feel|_|VB depressed|_|JJ

.|_|. i|_|PRP ’m|_|VBP better|_|JJR off|_|RP using|_|VBG

google|_|NNP .|_|.

Legomena
these HAPAX are just awful ! escitalopram caused me to gain
weight and feel depressed. i ’m better off using google.

standard word embeddings: create a lower-dimensional feature space that captures key patterns.
However, as we later demonstrate empirically, the representation embedding is particularly well
suited for psychometric NLP, providing strong discriminatory potential. Details regarding the
parallel representations and grid-based subsumption are as follows.

3.2.1 Parallel Representations. Table 1 illustrates the major parallel representations incorpo-
rated for the input text example: “These sawbones are just awful! Escitalopram caused me to gain
weight and feel depresed. I’m better off using Google.” The semantic category encompassed topic-,
sentiment-, and emotion-related representations. Topic representations included words, named
entities, hypernyms, and domain lexicons. Named entities, hypernyms, and lexicons were
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employed since they allow tracking of topical information at a less granular level, which can
help alleviate the pattern sparsity problem when dealing with limited text. For instance, named
entities, which were extracted using Stanford CoreNLP [42], aggregate person, place, and
organization-level information (such as “Google” in Table 1). Similarly, hypernyms derived using
the hierarchy in WordNet allow aggregation over “type of” relations [44]. As depicted in Table 1,
this enables us to associate the very uncommon term “sawbones” with the “DOCTOR” label.
Lexicons are used to provide an additional dimension for semantic abstraction. In the health
domain example presented in Table 1, lexicons related to common prescription drug names and
adverse reactions are incorporated and used to replace words appearing in the respective lexicon
term lists (e.g., the drug escitalopram).
A key aspect of these representations is that they all have the same length (i.e., an equal number

of tokens). This property allows these “parallel” representations to be merged into feature combi-
nations. Within the semantic category, words are merged with sense tags derived using WordNet
in order to allow better word sense disambiguation. Similarly, words can be combined with named
entities (e.g., “Google” and “organization”) to provide varying levels of granularity.
Additional semantic categories incorporated were sentiment and affect. Sentiment allows us to

gauge users’ levels of subjectivity and sentiment polarity. Words were mapped to their respective
word sense’s positive and negative sentiment polarity scores in SentiWordNet [7]. These scores
were grouped into high/medium/low bins, resulting in nine potential sentiment polarity tags. For
instance, the word “awful” has high negative polarity and a low positive polarity score. Similarly,
words weremapped to affect category tags based onWordNet Affect [55]. In the example presented
in Table 1, the word “depressed” gets mapped to the SADNESS emotion category.
The syntactic representations incorporated were parts-of-speech (POS) tags, words combined

with POS tags, misspellings, and legomena. Misspellings are a major source of sparsity and noise
in short, user-generated texts. Accordingly, spellchecking with support for word exclusions was
used to correct input text prior to construction of all parallel representations. Additionally, since
presence and frequency of misspellings can be important psychometric cues, the misspelling rep-
resentation was included. In Table 1, the misspelled input “depresed” is corrected for all repre-
sentations and noted with the MISSPELLING tag. Consistent with prior studies, legomena were
included in order to alleviate sparsity attributable to once-appearing words in the training set (e.g.,
“sawbones”) with a HAPAX tag [2]. The combination of words with their respective parts of speech
were included as an additional layer of word disambiguation [3].

3.2.2 Grid-Based Subsumption (GBS). Although parallel representations can allow inclusion of
rich linguistic representations at varying granularities, it also creates potential for inclusion of
noise, redundancy, and irrelevant information. For instance, all the nonbolded text in Table 1 is
redundant. Even some of the bolded parallel information may not be unique or useful. Accord-
ingly, prior studies have proposed the use of subsumption methods to rectify this concern: feature
space reduction techniques specifically crafted for natural language data [3, 50]. However, prior
methods use small, predefined subsumption mechanisms that are not scalable or extensible to
large, dynamic feature spaces (e.g., [1, 50]). In order to overcome these limitations, we propose a
novel GBS method well suited for “winnowing the wheat from the chaff” atop our rich parallel
representations. GBS uses a four-stage algorithm, as depicted in Figure 2. In the figure, directional
arrows indicate application of subsumption rule-based weighting/removal of n-grams (as done in
stages 1, 2, and 4). Solid lines indicate use of correlation-based methods to determine relationships
between different parallel representations (stage 2). Lighter-color shading is used to illustrate the
down-weighting of redundant or less important features across parallel representations. The idea
is that with each subsequent stage, a smaller proportion of the most important features is retained
to ensure the ensuing embedding is more effective. The sequence of stages in GBS is intended
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Fig. 2. A four-stage grid-based subsumption (GBS) algorithm.

to balance computational efficiency with subsumption quality. Within-category subsumption
(stage 1) is computationally efficient and generally capable of removing 50% of noise and redun-
dancy [3]. Stages 2 and 3 present a novel graph-sensing mechanism for computationally efficient
cross-category subsumption. These stages typically alleviate an additional 25% to 35% of noise and
redundancy in the parallel representation. Finally, correlation-based parallel subsumption (which
is computationally the slowest) is used to alleviate an additional 2% to 5% of noise. Details regard-
ing the four stages of GBS are as follows.
Stage 1 of GBS is mostly consistent with prior subsumption methods [3, 50], where only higher-

order n-grams with enhanced discriminatory potential are retained over their lower-order n-
gram feature counterparts within the same representation. Given the set of m representations
R = {r1, r2, . . . , rm }, where each rx signifies a parallel representation described in Table 1 (e.g.,
word), we extract all n-gram features such that any fi jx element in feature set F represents the ith

feature in n-gram category j for representation rx , and fi jx is initially weighted as follows:

w ( fi jx ) = max
ca,cb

(
p ( fi jx |ca )loд

(
p ( fi jx |ca )
p ( fi jx |cb )

))
+ s ( fi jx ), (3)

where ca and cb are among the set ofC class labels, ca � cb , y is one of the d tokens in fi jx with w
possible word senses, and function s is themean semantic orientation score across all token-senses,
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computed as the difference between the positive and negative polarity scores for sense q of token
fi jx in SentiWordNet:

s ( fi jx ) =
d∑

y=1

w∑
q=1

pos ( fi jx ,q) − neд( fi jx ,q)
dw

. (4)

The first part of the weighting equation considers the discriminatory potential of the feature based
on its log-likelihood ratio, whereas the second part factors in the semantic orientation to ensure
that features with opposing orientation (e.g., “like” versus “don’t like”) are differentiated in terms of
overall weights and when making subsumption decisions. Once features are weighted, the within
representation rx subsumption is performed as follows. Each n-gram feature fi jx withw ( fi jx ) > 0
is compared against each lower-order n-gram feature fuvx , where v < j, w ( fuvx ) > 0, and fuvx
contains some subsequence of tokens from fi jx . If c ( fi jx ) = c ( fuvx ), where:

c ( fi jx ) = arдmaxca,cb

(
p ( fi jx |ca )loд

(
p ( fi jx |ca )
p ( fi jx |cb )

))
+ s ( fi jx ). (5)

Then we determine whether to subsume the higher-order n-gram as follows, where t is a sub-
sumption threshold:

w ( fi jx ) =

{
0 i f w ( fi jx ) ≤ w ( fuvx ) + t .
w ( fi jx ) otherwise

(6)

Stage 2 entails cross-representation subsumption. Prior studies have relied on manually crafted
subsumption graphs encompassing predefined representations and relation links (e.g., [12, 46]).
In order to make the subsumption process more dynamic and extensible across an array of novel
psychometric dimensions, we propose a graph construction approach. For each unique pair of
representations rx and rz in R, let A and B signify randomly selected subsets of m features from
these representations, where each fi jx ∈ A and fuvz ∈ B is such that j,v = 1 (i.e., only unigram
features). Since representations vary with respect to feature frequency and co-occurrence patterns,
it is important to factor in such nuances by considering within-category similarities when making
cross-category comparisons. We use k-Means clustering to find the ideal partition over the 2m
feature sample encompassing all elements inAUB. With k = 2, this results inG = {д1,д2} clusters.
A link is formed between rx and rz if the cross-cluster entropy reduction ratio attributable to
representation affiliation information is below a certain threshold:

L(rx , rz ) =
⎧⎪⎪⎨⎪⎪⎩
1 i f

H (G |r )
H (G )

≤ l

0 otherwise
, (7)

where H (G ) is the entropy across clusters and H (G |r ) is:
H (G |r ) = −

∑
r={rx ,rz }

P (r )
∑
д∈G

P (д |r )loд2P (д |r ). (8)

In Stage 3, once links are formed between representations as described in Equation (7), cross-
representation subsumption between any pair of rx and rz where L(rx , rz ) = 1 is performed sim-
ilarly to the approach described in Equations (5) and (6) of Stage 1. Since the links are bidirec-
tional, L(rx , rz ) = L(rz , rx ). Hence, two-way comparisons are made, where each remaining fi jx
with w ( fi jx ) > 0 in rx is compared against each lower-order n-gram feature fuvz where v < j,
w ( fuvz ) > 0, and fuvz contains some subsequence of tokens from fi jx , and then, each remaining
fuvz withw ( fuvz ) > 0 in rz is compared against its lower-order n-gram counterparts in rx meeting
the same criteria.
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Finally, in Stage 4, we account for highly correlated nonsubsuming cross-representation fea-
tures. For each pair of rx and rz where L(rx , rz ) = 1, each remaining fi jx withw ( fi jx ) > 0 in rx is
compared against all remaining fuvz in rz with weight greater than 0, where j = v . If the correla-
tion between fi jx and fuvz is greater than threshold p,w ( fi jx ) = 0.

3.2.3 Embedding and BiLSTM. For each representation, we useword2vec to learn an l-sized em-
bedding vector for each token in that representation’s data. However, only tokens withw ( fi jx ) = 0
are included. For all other tokens, the embedding vector is replaced with a vector composed of 0s.
This embedding is then fed into a Bi-LSTM layer to learn the sequential dependency among words.
Given a sequence of words x1,x2, . . . ,xt , . . . ,xT , where xt is a vector for word embedding, RNN
learns the hidden features of each word based on all previous words in the sequence:

ht = σ (W hhht−1 +W hxxt + b), (9)

where W hh is the weights matrix based on the previous hidden features ht−1 and W hx is the
weights matrix based on the input word vector xt , b is a bias term, and σ is a nonlinearity function.
The equation above learns the hidden features based on previous words. Additionally, we can also
create hidden features by learning features based on next words, which is formulated as follows:

ht = σ (W hhht+1 +W
hxxt + b). (10)

RNNs can theoretically capture long-term dependencies, but it is hard to accomplish this in reality
due to the gradient vanishing problem. LSTM uses input, forget, and output gates to maintain more
persistent memory to capture the long-term dependencies. It is formulated as follows:

it = σ (W (i )X (t ) +U (i )h (t−1) ) (11)

ft = σ (W (f )X (t ) +U (f )h (t−1) ) (12)

ot = σ (W (o)X (t ) +U (o)h (t−1) ) (13)

c∼t = tanh(W (c )X (t ) +U (c )h (t−1) ) (14)

ct = ft ◦ ct−1 + it ◦ c∼t (15)

ht = ft ◦ tan(ct ), (16)

whereW (i ),W (f ),W (o),W (c ),U (i ),U (f ),U (o) , and U (c ) are weight matrices depending on the in-
put word vector and preceding hidden features. The Bi-LSTM is later concatenated with hidden
features of other embeddings as well as a softmax trained on weighted vectors where the binary
presence of “1” is replaced withw ( fi jx ) for each token in the text.

3.3 Demographic Embedding

Demographics can have a profound impact on individuals’ language usage tendencies and psy-
chometric characteristics [8]. We build a novel demographic word embedding to capture nuances
and norms inherent to different demographic segments. More specifically, the demographic
embedding identifies segments with the greatest entropy for a target psychometric dimension
such that modeling within versus across such demographics may alleviate systematic bias [21]
and enhance classification potential by better aligning embeddings with users’ underlying
semantic intent. Figure 3 illustrates the key intuition behind the demographic embeddings, which
are somewhat analogous to the segment-specific modeling idea espoused by techniques such
as classification and regression trees (CARTs). Using real data and the demographic embedding
described in this section, the figure shows how constructing embeddings within text associated
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Fig. 3. Illustration of the intuition behind demographic embeddings.

with demographics such as gender, age, and race can alter the word embedding space. For
instance, depending on the gender of the writer, terms such as “period” and “periods” can connote
biological versus temporal meaning. Words such as “bad” can signify stronger emotional valence
when used by certain races. Similarly, the word “cry” may be associated with varying health
and wellness implications depending on the user’s age. The demographic embedding attempts
to calibrate users’ embeddings based on various such demographic considerations. Details are as
follows.
The first task is to identify demographic variables that significantly affect the psychometric

dimensions of interest. We use a decision tree model to accomplish this task. Given a dataset
{a1,a2, . . . ,aM ,C}, where A = a1, . . . ,am , . . . ,aM is the set of input demographic attributes and
C = {c1, c2, . . . , cN } is the target psychometric classes, the decision tree partitions this dataset S
into subsets using “nodes” according to input attribute am at certain splitting values v ∈ V (am ).
V (am ) is the set of all possible values for attribute am . The goal is to create tree subdivisions that
provide discriminatory potential for a given target class cn . In this study, we use the entropy-based
information gain metric as the node selection metric.
Given a target class C with possible values {c1, c2, . . . , cm } and probability mass function P (C ),

the entropy H for the target class is defined as:

H (C ) = −
m∑
i=1

P (ci )loд2P (ci ). (17)

The information gain measures the reduction of entropy for target classes when further splitting
the dataset by a new input attribute am . Discretization is applied to continuous attributes before
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calculating the information gain. Specifically, the information gain of introducing an attribute am
is defined as:

G (C,am ) = H (C ) − H (C |am = vm ), (18)

where H (C ) is the entropy of the class label C and the second term is the expected entropy after
the dataset is partitioned using attribute am at value vm .

For the demographic embedding, we build two types of decision trees. The first type utilizes
all demographic variables, termed as “global tree” Tд . The second type consists of a collection of
“local trees” Tl j , each of which excludes one among the demographic variables. In the same spirit
as the random forest algorithm [9], these local trees build on a random subset of input attributes
to alleviate the possible dependency on a few dominant attributes. In order to be computationally
feasible, we employ a binary tree structure and use depth parameter d = 1, 2, . . . ,D to control the
tree size. The demographic trees are formulated as follows:

Tд = {am = vm |a ∈ A,ht (Tд ) = d } (19)

Tl j = {am = vm |a ∈ A, {ai },ht (Tl j = d )}, (20)

whereht () is the height function of the tree. Themost prominent demographic conditions affecting
the psychometric classes are selected based on node score I :

I (am = vm ) =
NA(am = vm )

H (C |am = vm )
+
N (am = vm )

N (S )
, (21)

where am = vm is the node representing a condition defined by an attribute am and its splitting
value vm (e.g., Age= 35);NA(am = vm ) is the average of the accuracies of all the leaves underneath
this node;H (C |am = vm ) is the entropy with regard to class label for this node; N (am = vm ) is the
number of data points belong to this node; and N (S ) is the total number of data points in the
dataset.
The final set of demographic conditionsM incorporated include the root node of the global tree

and the top K − 1 nodes (ranked by node score I ) from the local trees:

M = {a0 = v0 |Tд }U {am = vm |Tlk , l (am = vm ) ∈ rt l (I1, I2, . . . , IK−1)}, (22)

where a0 = v0 |Tд is the root node condition for the global tree and rt l (I1, I2, . . . , IK−1 is the top
K − 1 node scores for the local trees. The demographic embedding leverages this information as
follows:

(1) Letmk represent one of the K elements in M . For eachmk , we identify a subset of indi-
viduals satisfying that condition in the training set and construct a subcorpus comprising
text only belonging to those individuals. We use word2vec to learn an l-sized word embed-
ding vector for each word j in the subcorpus mk such that wk j = (wk j1,wk j2, . . . ,wk jl ).
We also train a general word embedding across each word in the entire training set
w j = (w j1,w j2, . . . ,w jl ).

(2) For each individual ui , we can identify the subsetMs = {m1,m2, . . . ,ms |m ∈ M } of demo-
graphic conditions applicable to that user. Following the average embedding idea [61],
the demographic embedding weight wdi j for word j appearing in a text instance asso-
ciated with individual ui is defined as the weighted average of node score Iw and the
node-specific word embeddingws j :

wdi j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
∑ |Ms

s Iw ∗ws j )

|Ms | i f |Ms | > 0

wdi j i f |Ms | = 0.

(23)
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Fig. 4. Example embedding calibration based on demographics.

As discussed earlier in the beginning of the section using a small real-data-based illustration,
demographic embeddings allow the word embeddings for a user to be calibrated based on the
user’s demographics. The visuals appearing in Figure 3 are naturally illustrative, not exhaustive.
Figure 4 delves deeper by showing another example of how that calibration looks, in this case for
users above or below the age of 40. From the figure we can see that words such as “drive,” “crying,”
and “old” have different semantic connotations for different age groups. As we later demonstrate
in the evaluation section, the inclusion of such demographic embeddings can allow more precise
representation of words that might otherwise be susceptible to mean-centering across diverse
subsets of the user population when modeled using a single global word embedding.

3.4 Structural Equation Model (SEM) Encoder

Psychometric dimensions are inherently correlated. For example, a patient with high anxiety as-
sociated with seeing a physician may also have low self-esteem [22]. In order to incorporate such
secondary psychometric dimension information in PyNDA, we propose a novel Structural Equa-
tion Model (SEM) encoder. The underlying intuition behind our encoder is similar to the feature
augmentation idea commonly used inmultitask learning, which has been shown to offer significant
performance lifts. Similarly, as illustrated in the ablation analysis in Section 4, our SEM encoder
significantly enhances performance for classification of psychometric dimensions. Details are as
follows. In order to incorporate such secondary psychometric dimension information in PyNDA,
we propose a novel SEM encoder. The underlying intuition behind our encoder is similar to the
feature augmentation idea commonly used in multitask learning, which has been shown to offer
significant performance lifts. Similarly, as illustrated in the ablation analysis in Section 4, our SEM
encoder significantly enhances performance for classification of psychometric dimensions. Details
are as follows.
SEM is a general multivariate statistical modeling technique to depict and test relationships

among variables related to psychometric measures [36]. It models the psychometric dimensions as
latent variables and discovers their most suitable relationships based on data. Figure 5 illustrates
the important components of an SEM. The circles represent latent variables (or psychometric
dimensions), whereas the straight arrows signify the relationships between them. P denotes the
path coefficients for relationships. R2 is the variance explained in a consequent variable by a set
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Fig. 5. Structural equation models for psychometric dimensions.

of antecedent variables. Model fit refers to the ability of an SEM model to fit the data. Common
model fit indices include Comparative Fit Index (CFI), Tucker Lewis Index (TLI), and Root Mean
Squared Error of Approximation (RMSEA). CFI and TLI are comparative fit indices that compare
the model of interest with an alternative, such as a null model. They range between zero and
one, with a higher value indicating a better fit. RMSEA is an absolute measure of fit based on
the noncentrality parameter. Higher RMSEA indicates poor model fit. The SEM encoder aims to
incorporate these multivariate, structured correlations between psychometric dimensions into
PyNDA. Specifically, we build a series of SEM models for a given target psychometric dimension
of interest along with other dimensions potentially affecting it. Let S represent a set of SEM
models for a target psychometric dimension. Each model Gi in S can be considered a directed
graph containing latent variables (or nodes) and directed links, arranged in a linear sequence with
K levels and J nodes for each level such that node nk j at level k ≥ 1 connects to each nk+1j in the
next level. P is the path coefficient from an antecedent nk j leading to a consequent variable nk+1j
with variance R2 across all of its inbound antecedent links from level k . The target psychometric
dimension only appears in level k ≥ 2 to ensure it has antecedent variables and valid P and R2. For
each Gi , we can obtain the model fit indices CFI, TLI, and RMSEA. In order to include a balanced
model fit measure, we use MF = (CFI +TLI + (1 − RMSEA))/3 to depict the average model fit
indices. For each nontarget variable v ∈ V , we find a subset S∗ of all the SEM models containing
them. We use a scoring function that weights path coefficients and model fit indices equally to
summarize the relevance of any v to the target variable:

w (v ) =
1

S∗
����
∑
S∗

P
���� +

1

2|S∗ |
�
�
∑
S∗

R2 +
∑
S∗

MF	


. (24)

Finally, for each target variable we can derive the top K from V based on w (v ) values. In order
to avoid future leaks, we assume that V is unknown for test instances and must be predicted.
Hence, a model is built on the training data to jointly score each selected v . This is done using
a standard word embedding, followed by a Bi-LSTM layer and a fully connected dense layer to
classify the selected independent variables. The learned dense layer is then directly concatenated
with the ones yielded by other embeddings to classify the target psychometric dimensions of
interest.

3.5 Structural Multitask Learning

Given the user-centric nature of psychometric analysis, structural relationships among target psy-
chometric measures provide a unique opportunity for multitask learning. For example, if “trust in
doctors” and “anxiety of seeing physicians” are correlated, we can share their input text features
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Fig. 6. Structural multitask learning for psychometric dimensions.

and jointly train the two classifiers together to augment the feature set for the current task. No-
tably, the relationship among psychometric measures follows a hierarchical structure, as discussed
in the SEM encoder section. Therefore, we can build a structural feature sharing representation to
reflect this unique property.
Figure 6 presents our proposedMTL approach. Suppose we have four target variables of interest

and wish to share features among them. Following [41], we create “separate LSTMs” consisting of
task-specific features and a single “shared LSTM” as a cross-task representation that reflects com-
mon patterns and cues across the different classification tasks. We jointly train these classifiers
to allow feature sharing. In order to maintain orthogonality between shared and separate repre-
sentations [41], adversarial training is used to optimize the purity of the shared representations.
The idea is to build two neural networks, generator and discriminator, to combat one another. The
generator tries to generate the purest shared feature set, while the discriminator attempts to dis-
tinguish the shared features into specific tasks. In our case, the single “shared LSTM” is used as the
generator that works adversarially against a multilayer perceptron as the discriminator. For the
generator to learn to purify the shared feature set, it needs the gradients from the discriminator,
which are propagated back via a “Gradient Reversal Layer (GRL)” [26]. GRL applies an identity
function on the inputs in the forward pass and sends the negative gradients back in the backward
pass, which enables learning in the generator network. To train the discriminator, we simply map
the shared representations into a probability distribution predicting what kinds of tasks can be
inferred. Cross-entropy loss is used to train the discriminator.
The tension between two networks results in convergence when the discriminator is no longer

able to perform such differentiation, thereby resulting in better feature sharing. Collectively, this is
accomplished via the loss function L = LTask + λLAdv + γLDif f . As depicted in Figure 4, we extend
this idea for our context in two ways. First, we performMTL across various components of our ar-
chitecture, including the final concatenation layer, demographic embedding LSTM, representation
embedding LSTM, and character CNN:

LTask =
K∑
k=1

αk L(x (k ),y (k )), (25)
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where L(x (k ),y (k )) is the cross-entropy of the true/prediction distributions on the training set,K is
the product of the tasks and architecture components, andk is a given task architecture component
with a learned weight αk . This allows flexibility in accounting for interaction effects between and
across tasks and architecture components in our MTL setup.
Second, we perform cross-task training instance alignment by minimizing the distance between

concurrent inputs (e.g., anxiety and trust text instances). Since back-propagation occurs across all
tasks via the unified loss function, the idea is to input texts from different tasks that are similar on
psychometric dimensions in order to challenge the discriminator (i.e., LAdv ). For instance, given
the target task variable is anxiety, for an input instance with high anxiety, we may wish to pair
it with a low or high trust text instance from a different user that also has high anxiety. Since
minimizing such distance between concurrent training instances is an NP-hard problem, we use a
simple greedy heuristic where the tasks concurrent to the target are ranked based on their w (v )
as defined in Equation (25). The target tasks’ training instances are then paired with the nontar-
get task with the highest w(v) based on Euclidean distance between users’ psychometrics. These
tuples are then compared with instances from the next task based on minimal distance, and so
on, resulting in concurrent instance sets that are somewhat homogenous across psychometric di-
mensions, allowing MTL to learn richer separate and shared features. As later demonstrated in the
ablation analysis, structural multitask learning with adversarial training provides an additional
performance lift for our psychometric extraction tasks.

4 TESTBED

In order to evaluate the proposed PyNDA architecture, an extensive research testbed was con-
structed, comprising three datasets and 11 total classification tasks. While psychometrics are
known to be important in various application domains including security and e-commerce, in
this study we focused on the health domain. The first two datasets encompassed four important
psychometric dimensions known to be predictive of health outcomes.
1) Health Literacy (HL) - In essence, HL is a subjective construct reflecting howmuch one thinks

one knows about health [46]. Low HL has been associated with increased mortality, increased
hospitalization, and poor adherence and self-maintenance to a host of chronic diseases such as
diabetes, heart disease, and risk of stroke [46].

2)Health Numeracy (HN) - Conversely, health numeracy (HN) is an objective construct reflecting
the ability to calculate, use, and understand numeric and quantitative concepts in the context of
health issues. HN has been associated with outcomes such as the ability to understand dosage in
medication and adherence to treatment [14].

3) Trust in Doctors (TD) - Perceptions of trust in physicians/doctors (TD) can have an important
mediating role on health outcomes [22].
4) Anxiety Visiting Doctors (AV) - Anxiety when visiting the doctor’s office is another strong

mediator for health outcomes such as future doctors’ visits and wellness [54].
For each of the four aforementioned psychometric dimensions (HL, HN, TD, and AV), well-

established survey items have been developed in the literature. These items can be used to compute
individuals’ scores on a fixed continuous scale (e.g., 1–10). In order to construct our user-generated
text datasets, we developed equivalent free response questions with accompanying text boxes that
immediately followed the survey items. These questions were validated through pretesting and
were found to nicely represent the target variable for each user’s collected text.
Table 2 summarizes the three datasets and related classification tasks incorporated in our

testbed. Consistent with several prior psychometric and NLP studies, for our first dataset we used
Amazon Mechanical Turk (AMT) since it is considered somewhat representative of the broader
Internet population. Each respondent provided quantitative and text responses for all four target
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Table 2. Summary of Test Bed: Three Datasets and 11 Tasks

Characteristics AMT Qualtrics HealthForum

Text Instances 4,262 4,240 138,998

Classification Tasks Subjective Literacy (HL),
Health Numeracy (HN),
Trust in Doctors (TD),
Anxiety in Visiting (AV)

Subjective Literacy (HL),
Health Numeracy (HN),
Trust in Doctors (TD),
Anxiety in Visiting (AV)

Drug Experience,
Age, Gender

Demographics

Race 81.2% white, 7.4% black 50% white, 50% black Unavailable

Age (Mean) 37.4 45.6 39.9

Gender (Male) 48.3% 24.2% 29.4%

Income (USD) 62% < $55K 67% < $55K Unavailable

Education (College Grads) 44.6% 32.1% Unavailable

dimensions of interest, some additional secondary dimensions, plus demographics such as age,
gender, race, income, and so forth. A total of 4,262 usable user responses were collected.
The third dataset was composed of 138,998 user drug experience assessments collected from

an online health forum. The major psychometric dimension of interest in this dataset was users’
self-reported prescription drug experience ratings, which appear on a 1-to-5 scale. In addition to
the ratings, users in this forum provide some basic demographics such as age and gender, and
text comments describing their experience, reasons for taking the drug, and potential side effects.
Although demographics such as age and gender are not psychometric dimensions, due to their
close relation to psychometrics, we included user age and gender as additional classification tasks
for evaluating PyNDA and comparison methods. The health forum dataset was included due to its
complementary nature to the AMT and Qualtrics datasets with respect to number of instances, di-
mensions, and response collection mechanism. Collectively, the testbed was composed of a diverse
array of datasets, tasks, and user content channels.

5 EVALUATION

5.1 Experiment Results - Benchmark Methods

In order to assess the performance of our PyNDA architecture, we conducted an extensive
benchmark evaluation in comparison with 16 text classification techniques, presented in Table 3.
The comparison methods belong to five categories: feature-based classifiers, CNNs, LSTMs, hybrid
deep learning architectures, and multitask deep learning methods. While the selected techniques
are not an exhaustive list, they are representative of state-of-the-art approaches in each of the five
categories. Included were well-established feature-based classifiers, such as the Multinomial Naive
Bayes [43], Logistic Regression [28], FRN [3], FastText, and Linear SVM [48]. Also selected were
widely used CNN architectures, such as CNNSent [35], CNNChar [60], VD-CNN [17], SWISS-
CHEESE [19], and SENSEI-LIF [42]. In order to further enrich the evaluation, we also built several
custom CNN architectures, such as CNNWordRep, which uses CNN to build word and representa-
tion embeddings before inserting these into the dense layers for final classification, and CNNCom-
bine, which uses CNN to build word and representation embeddings simultaneously. Prominent
LSTM architectures were also selected, including the basic LSTM [39], LSTMWordRep [56], and
LSTMCombine. The LSTMsThenCNNs [15] method was included as a hybrid deep learning
architecture.
For feature-based classifiers, consistent with prior work, we adopted unigram features with tfidf

weighting since these yielded the best performance. Additionally, for multinomial Naive Bayes,
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Table 3. Summary of Benchmark Results

Category Method Accuracy
Precision
+High

Precision
-Low

Recall
+High

Recall
-Low

F-score
+High

F-score
-Low

ROC
AUC

FastText [34] 73.9 73.4 74.4 74.9 72.9 74.2 73.6 73.9

FRN [3] 74.9 73.0 75.0 74.3 74.8 73.7 74.9 74.9

Feature Linear SVM [48] 73.5 73.3 73.7 73.8 73.1 73.6 73.4 73.5

LogisticRegression [28] 74.6 73.9 75.6 76.1 73.2 75.0 74.3 74.7

Multinomial NB [43] 73.4 72.9 74.8 75.7 71.2 74.3 72.9 73.5

CNNSent [35] 74.4 73.4 76.4 77.9 70.8 75.6 73.5 74.4

CNNChar [60] 66.6 66.2 68.0 69.4 63.7 67.8 65.8 66.6

CNNWordRep 73.6 73.4 74.4 74.7 72.6 74.0 73.5 73.6

CNN CNNCombine 73.2 72.2 74.7 75.2 71.1 73.7 72.8 73.2

SENSEI-LIF [42] 73.4 73.2 74.1 74.4 72.3 73.8 73.2 73.4

SWISSCHEESE [19] 74.1 73.6 73.9 76.3 71.8 74.9 72.9 74.1

VeryDeepCNN [17] 58.9 58.1 60.4 63.2 54.2 60.5 57.1 58.7

LSTM [39] 72.6 72.5 73.5 73.5 71.8 72.9 72.6 72.6

LSTM LSTMCombine 74.8 74.8 75.1 75.5 74.1 75.2 74.6 74.8

LSTMWordRep [56] 74.5 74.6 74.7 74.6 74.3 74.6 74.5 74.4

Hybrid LSTMsThenCNNs [15] 75.1 74.1 76.8 77.6 72.5 75.8 74.5 75.1

PyNDA 81.1 80.2 82.1 82.7 79.4 81.4 80.7 81.0

we used Laplace smoothing, and we ran logistic regression using the L2 penalty with LibLinear
solver with 100 maximum iterations. For SVM, we adopted the L2 penalty with squared hinge loss
function, with 1,000maximum iterations. For all the deep learning benchmarkingmodels as well as
PyNDA, we tuned the settings and parameter values on a validation set. The text representations
for all benchmarking deep learning models were those used in the original studies.
All methods were evaluated using fivefold cross-validation (with 80% training and 20% test-

ing per fold). For PyNDA, hyperparameters were tuned lightly on a validation subset within the
training data. For comparison methods, a more in-depth combination of grid and random search
was used in order to ensure a fair comparison and that PyNDA’s performance lift was not simply
attributable to parameter settings.
Using this process, for Fasttext [43], a learning rate of 0.001 was used. For CNNSent [28], the

batch size was set to 6 and the number of dimensions for the word embeddingwas 128. For SENSEI-
LIF [23], 128 dimensional embeddings were utilized along with 64 filters in the CNN. The LSTMs-
ThenCNNs [57] was runwith one layer for both CNN and LSTM, with 64 filters in the CNN and 128
nodes per layer in the LSTM. VeryDeepCNN [65] performed best using a three-layer CNN with 64
filters per layer. CNNChar [37] also performed best with one layer and 64 filters. SWISSCHEESE
[42] was run with two layers and 128 dimensional embeddings. For all comparison methods with
CNNs, we tried different kernel sizes (3, 5, 7, 12) and found size = 7 to typically work the best for
benchmark techniques.
The parameter settings for our proposed architecture were as follows. For the character embed-

ding, we used one hot encoding—the CNN embedding consisted of two layers of 1D convolution
filters followed by maxpooling layers. We used 128 filters for each layer with a kernel size of 7
and maxpool size of 3. The BiLSTM layers for representation and demographic embedding used
two layers of bidirectional LSTMs with 128 units in each layer. Finally, the dense layers for all the
embeddings consisted of two fully connected layers with 256 units each. Regularization was done
using a dropout value of 0.5. We used a batch size of 16, and 10 epochs.
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For parallel representations, n-grams up to n = 4 were extracted for representations depicted in
Table 1. For GBS, the subsumption threshold t was set to 0.05, and the cross-category thresholds
l and p were each set to 0.95. For the SEM encoder, K was learned dynamically from the training
data for each fold of a given target psychometric dimension, and ranged between 2 and 8. For our
MTL method, we set λ and γ to 0.05 and 0.01 as done in [41].

Bifurcation was performed on each dataset to convert the continuous psychometric target class
variables into binary high/low classification variables. Consistent with prior studies, this was done
by only using instances from the end quartiles as the low and high class labels, respectively.
Table 3 presents the PyNDA results along with the 16 benchmarking methods, averaged across

the 11 datasets. PyNDA significantly outperformed the benchmarking methods across all evalua-
tion metrics, including accuracy, precisions, recalls, and receiver operating characteristic curve
area-under-the-curve (ROC). The overall accuracy, F-measures, and ROC for PyNDA were at
least 5% higher than the second best method. Among benchmarking methods, LSTM architec-
tures were better than CNN, underscoring the importance of capturing long-term dependencies
among texts for more effective psychometric classification. CNNChar yielded the worst results,
suggesting that morphological patterns may not be critical indicators for psychometric-related
texts. Instead, word- or sentence-level features may have more predictive power, as illustrated by
the relatively higher performance for CNNSent and CNNWord. Given the recent effectiveness of
CNN approaches in sentiment classification tasks (e.g., [19, 42]), the relative superiority of LSTM in
our context reinforces previously stated notions of the complexity of the nuanced psychometric di-
mensions examined in our study. Feature-based classifiers demonstrated reasonable performance,
relative to alternative benchmarking methods.
Figure 7 depicts the accuracy and F-measures of the best method for each category, broken down

by the 11 psychometric classification tasks across the three datasets. In general, PyNDA outper-
formed the second-best methods on 10 (out of 11) measures regarding accuracy, all measures in
terms of F-measure for the positive class, and 10 measures for F-measure for negative class. Collec-
tively, the results showcase the efficacy and utility of our proposed architecture. The results also
suggest that the amalgamation of CNN, LSTM, and multitask learning coupled with rich underly-
ing embeddings and encoders offers robust classification performance across myriad datasets and
psychometric classification tasks.

5.2 Experiment Results - Ablation Analysis

PyNDA encompasses novel embeddings, encoders, and a multitask learning scheme. In order to
examine the additive impact of each component of the architecture, ablation analysis was per-
formed. We compared the full PyNDA against a base version encompassing only the CNN with
character embedding. We then incrementally added the parallel representations with an LSTM,
the full representation embedding using GBS, the demographic embedding and SEM encoder, and,
finally, multitask learning.
The top half of Table 4 shows the summary (averaged) results across all 11 tasks associated

with our three test beds. From the table, it is apparent that each additional component included in
the ablation analysis bolstered performance. For instance, including the parallel representations
over the base character embedding enhanced accuracy by 8 percentage points. Inclusion of the full
representation embedding added an additional 4-point lift. Similarly, the demographic embedding,
SEM encoder, and MTL enhanced accuracy by about 2 percentage points, on average. Paired t-test
results across the five folds of the 11 datasets (i.e., n = 55) revealed that each additional component
significantly enhanced performance over the prior ablation setting (all p-values < 0.05; df = 54).
We also evaluated two alternative MTL setups. The first was a separate word embedding

and separate and shared LSTMs, exactly as proposed in [41], concatenated with the rest of our
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Fig. 7. Accuracy and F-measures for each task across three datasets.

architecture. The second was our MTL with only the final concatenation layer (i.e., no embedding
LSTM-level weights). The results, depicted in the middle of Table 4, show that the more holistic
application of MTL in PyNDA, with inclusion of finer-grained component-level weights in LTask
coupled with training instance alignment, boosts accuracy by 1.5% to 4% over alternative setups.
Finally, we examined the effectiveness of the demographic embeddings and parallel

representation-weight-based LSTMs relative to the use of pretrained embeddings. The re-
sults from these comparisons appear at the bottom part of Table 4. Replacing the demographic
embeddings used in our proposed PyNDA architecture with a pretrained word embedding
decreased accuracy and class-level precision and recall by 1% to 2% across the board. We also
explored the lift of the demographic embedding versus simply adding the demographic variables
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Table 4. Summary of Ablation Analysis Results

Ablation Setting Acc Prec+ Prec- Rec+ Rec-

CharEmbeddingCNN 66.6 66.2 68.0 69.4 63.7
+ParallelRepsLSTM 74.8 74.8 75.1 75.5 74.1
+RepEmbedding 79.4 78.9 80.1 80.6 78.2
+DemEmbd&SEMEnc 80.3 79.5 81.3 82.0 78.6
+MultiTaskLearning 81.1 80.2 82.1 82.7 79.4
Alternative Multitask Learning (MTL) Setups
MTLSeparateWord 77.0 77.1 77.2 76.9 77.0
MTLNoComponents 79.6 79.3 80.0 80.5 78.7
Demographic vs. Pretrained Embedding
DemEmbd&SEMEnc 80.3 79.5 81.3 82.0 78.6
DirectDem&SEMEnc 79.5 78.9 79.8 80.6 78.3
PretrainedDemEmbd&SEMEnc 79.2 78.6 79.9 80.1 78.1
Parallel Rep LSTM vs. Pretrained Embedding

ParallelRepsLSTM 74.8 74.8 75.1 75.5 74.1
PretrainedEmbdsLSTM 73.1 72.8 73.6 73.8 72.2

directly to PyNDA (called DirectDem in Table 4)—the embedding enhanced overall results by 1%.
As later illustrated in Figure 11, the deltas are even more pronounced for certain key statistical
(and otherwise) minority groups in the data. The results further underscore the utility of the
explicit split representation employed by the proposed demographic embedding for enhancing
predictive power while debiasing. Similarly, replacing the “ParallelRepsLSTM” in PyNDAwith the
pretrained embedding weights dropped accuracy, precision, and recall by 1.5% to 2%, highlighting
the value of the representation embeddings with LSTMs relative to the pretrained embeddings.
Figure 8 shows ablation analysis accuracies for each of the 11 tasks in our three datasets. The

x-axis shows the impact of the five ablation settings. For almost every task, we observe a general
upward trajectory as additional components of PyNDA are incrementally introduced. Though not
depicted here due to space constraints, similar plots were observed for positive and negative class
F-measures. The figure demonstrates the robustness of each PyNDA component’s additive contri-
bution across the 11 tasks.
In order to dig deeper into the impact of the five components of PyNDA, we examined the

effectiveness of various combinations of component subsets relative to use of all five components.
Table 5 presents the experiment results. Due to space constraints, we do not report all possible
combinations. Rather, select good-performing pairs, triples, and four-component combinations
are presented along with the results for the full PyNDA configuration. Once again, results were
averaged across the 11 datasets. In general, PyNDA outperforms various subset combinations
by 1 to 2 percentage points. Interestingly, looking at the occurrence frequency for components
in top-performing combinations, we can see that the parallel representations are utilized the
most (i.e., the representation embedding and the representation-weight-based LSTM), followed
by the demographic embedding + SEM encoder and multitask learning. With the exception
of the baseline character embedding CNN, all components seem to complement one another.
However, it is worth noting that the results presented here are averaged across the 11 datasets.
As depicted earlier in Figure 8, performance for components can vary a bit depending on the
psychometric dimension of interest. Nevertheless, the results further underscore the design
efficacy and robustness of the various components of PyNDA.
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Fig. 8. Ablation analysis accuracy for each task across three datasets.

Table 5. Summary of Combinatorial Analysis Results

PyNDA Component Combination Setting Acc Prec+ Prec- Rec+ Rec-

Individual Components

CharEmbeddingCNN 66.6 66.2 68.0 69.4 63.7

ParallelRepsLSTM 74.4 74.3 75.0 75.2 73.7

RepEmbedding 76.2 75.1 76.8 76.9 74.8

DemEmbd&SEMEnc 75.8 75.2 76.6 76.8 75.0

MultiTaskLearning (MTL) 75.8 75.0 76.8 76.8 75.1

Select Two-Component Combinations

RepEmbd+DemEmbd&SEMEnc 77.4 77.1 77.8 77.9 77.0

MTL+ParallelRepsLSTM 75.9 75.6 76.4 76.8 75.1

MTL+RepEmbd 77.8 77.3 78.1 78.6 76.9

CharEmbdCNN+MTL 76.0 75.2 76.9 77.4 74.6

ParallelRepsLSTM+DemEmbd&SEMEnc 76.3 75.3 77.0 77.9 74.8

Select Three-Component Combinations

CharEmbdCNN+ParallelRepsLSTM+DemEmbd&SEMEnc 76.3 75.9 76.7 77.1 75.6

MTL+DemEmbd&SEMEnc+ParallelRepsLSTM 77.9 77.7 78.7 78.9 77.3

RepEmbd+MTL+DemEmbd&SEMEnc 80.2 80.0 80.3 80.9 79.4

MTL+DemEmbd&SEMEnc+ParallelRepsLSTM 80.0 79.6 80.3 81.2 79.1

Select Four-Component Combinations

RepEmbd+MTL+ParallelRepsLSTM+DemEmbd&SEMEnc 80.6 79.5 81.4 81.8 79.2

CharEmbdCNN+MTL+DemEmbd&SEMEnc+RepEmbd 80.3 79.8 80.8 81.3 79.1

PyNDA 81.1 80.2 82.1 82.7 79.4
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Fig. 9. Impact of parallel representations on bi-LSTM prediction confidences for true positives/negatives.

Table 6. Illustration of How Representation Embeddings Enhance Semantic Richness

Representation Word

Neighbors in Representation

Embedding

Neighbors in Default

Embedding (word2Vec)

Sentiment
good happy, strong, healthy bad, strong, dangerous
bad serious, hard, heavy good, low, high
mild minimal, constant, minor weird, slight, minor

Domain

Lexicons

back sleep, pregnant, muscle down, off, through
stomach chest, heart, abdomen mood, breast, allergies
pill tablet, antibiotic, injection shot, round,method

One critical component of PyNDA is the parallel representations and the related representation
embedding that utilizes GBS to allow greater semantic, syntactic, and stylistic richness in the input
space. Figure 9 shows how the Bi-LSTM weights for true positive and negative cases are enhanced
by inclusion of the representation embedding. In general, the Bi-LSTM classifier becomes more
confident for its correct predictions, suggesting that the parallel representations are indeed serving
as an effective mechanism for enhancing regularization.
In order to dig deeper into the value proposition of the representation embeddings, Table 6

depicts the nearest neighbors for select sentiment and (health) domain-specific words in the
representation embedding versus a standard word embedding trained using word2Vec. Here, near-
est neighbors were computed using the standard cosine similarity measure between the words’
n-dimensional embedding vectors. From the table, we can see that the default word embedding
groups words with opposing sentiment polarity next to one another (e.g., neighbors for “good”
and “bad”), whereas in the parallel representation, through inclusion of sentiment lexicons such
as SentiWordNet, neighbors for these words are ones with similar sentiment polarity. Similarly,
for domain lexicon terms such as “stomach,” the parallel representation identifies other anatomy
terms, and “pill” is in closer proximity to other drug administration terms such as “tablet” and “in-
jection.” Likewise, the term “back” is consideredmore anatomical (noun sense) and associated with
sleep, pregnancy, and muscular considerations. In order to allow readers to more easily visually
examine the differences in the embeddings, we visualize the embeddings in a two-dimensional
plot (Figure 10), which shows the sentiment and lexicon embeddings’ effectiveness in focusing
on alternative semantic representations relative to the standard word embeddings. The results in
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Fig. 10. Word neighborhoods in representation vs. word2vec embeddings.

Figures 9 and 10 and Table 6 shed light on how the parallel representations bolster the richness of
the input space, allowing enhanced psychometric NLP capabilities.
In order to further examine the value proposition of the demographic embedding and its ability

to alleviate bias, we compared its performance against a “No Demographic” variation of the ar-
chitecture comprising CharCNNEmbedding, ParallelRepLSTM, and the RepEmbedding only. We
also compared against the same architecture with the demographic variables concatenated to the
architecture via an artificial neural network, called “Direct Demographic.” The demographic em-
beddings outperformed each comparison method by 1% to 2% or more in average accuracy across
the 11 tasks. However, the performance deltas were especially pronounced on the demographic
segments identified by our demographic embedding method. As one illustration, Figure 11 depicts
accuracies for three related segments on the numeracy classification task, on the Qualtrics dataset.
For those without college education, income less than $55,000, and black racial affiliation, the de-
mographic embedding outperformed the no-demographic and direct variable approaches by 3 to
5 percentage points.
It is worth noting that the segment-specific embeddings such as these ones each accounted for

between 10% and 20% of all users in the dataset. Words weighted differently by the demographic
embeddings for the numeracy task included “capable,” “able,” “interest,” “understand,” “capacity,”
and “complex.” Similarly, words such as “anxious” and “worry” were weighted differently when
uttered by such segments in the context of the anxiety classification task. The results reinforce
the notion that calibrating the psychometric discriminatory potential of utterances based on de-
mographic considerations can alleviate bias and enhance classification accuracy. Collectively, the
ablation analysis results further underscore the robustness of the embeddings, encoder, and mul-
titask learning environment proposed in PyNDA.
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Fig. 11. Demographic embedding accuracy for select segments on qualtrics numeracy task.

6 CONCLUSION

Psychometricmeasures reflecting people’s knowledge, ability, attitudes, and personality traits have
profound implications formany important, real-world challenges, such as e-commerce, health care,
and cybersecurity. However, effectively measuring and extracting rich psychometric dimensions
from user-generated content in a timely and unobtrusivemanner has proven elusive. In this article,
we propose a novel deep learning architecture, PyNDA, to extract critical psychometric dimensions
such as literacy, numeracy, trust, anxiety, and experience ratings from natural language texts. In
order to address the paucity of the user-generated texts as well as to reflect the demographic sensi-
tivity and user-centric characteristics of psychometric dimension extraction, PyNDA is composed
of several proposed components, including a representation embedding, a demographic embed-
ding, an SEM encoder, and a multitask learning mechanism. Our experiments on 11 tasks pertain-
ing to three datasets show that PyNDA markedly outperforms traditional feature-based classifiers
as well as state-of-the-art deep learning architectures.
We believe the biggest novelty of our work lies in the representation engineering phase, which

encompasses the representation embedding, demographic embedding, and SEM encoder in order
to effectively represent rich and diverse psychometric information. To the best of our knowledge,
the ideas of utilizing an array of semantically parallel nonredundant embeddings, demograph-
ically calibrated embeddings, and structural equation modeling information in a deep learning
NLP architecture are all relatively new. Further, given the limited prior work on such psychomet-
ric dimensions, designing and developing a deep learning architecture that effectively fuses these
models is certainly a nontrivial undertaking. Case in point, our ablation analysis and combina-
torial expeirments show that arbitrarily fusing these representational components and applying
multitask learning in an unprincipled manner doesn’t work well. Hence, we believe the model fu-
sion and multitask learning arrangements constitute a key secondary technical contribution that
future work can expound upon.
Given the lack of prior work focused on natural language processing methods for deriving psy-

chometrics from secondary data, the results have important implications for information retrieval
and behavior modeling. For instance, by adding attitudes and beliefs as an additional information
refinement, psychometric dimensions could be used to enrich contextual search efforts that have
focused on using task, sentiment, omni-channel cross-device journey, and spatial-temporal infor-
mation to enhance search-related outcomes. Our work also contributes to the growing body of
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literature on user modeling by introducing demographically calibrated embeddings and structural
equation modeling concepts in text extraction and categorization contexts. Furthermore, PyNDA
has profound practical implications: for example, it could be used to infer users’ psychometric
attitudes and beliefs, which drive key behaviors in various critical contexts such as health, cyber-
security, and e-commerce. Within the health domain, such models could be deployed via mobile
apps to help infer patients’ mental statuses related to chronic diseases in a timelier manner using
mobile-generated text, thereby helping physicians conduct informed decision making and also al-
lowing patients to better self-regulate their health statuses. In the future, we hope to extend our
model to some of the other aforementioned application domains and also to deploy them in real-
time synchronous chat contexts. We believe that this present study constitutes an important initial
step toward these future real-world applications.
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