FROM POLICY TO PRACTICE: RESEARCH DIRECTIONS FOR
TRUSTWORTHY AND RESPONSIBLE Al “BY DESIGN”

Ramayya Krishnan John P. Lalor
Al Measurement Science & Engineering Center Human-centered Analytics Lab
Heinz College of IS and Public Policy Department of IT, Analytics, and Operations
Carnegie Mellon University University of Notre Dame
rk2xQcmu. edu john.lalor@nd.edu
Nicolas Prat Ahmed Abbasi
Department of IS, Data Analytics, and Operations Human-centered Analytics Lab
ESSEC Business School Department of IT, Analytics, and Operations
prat@essec.edu University of Notre Dame

aabbasiOnd.edu

ABSTRACT

Rapid advancements in the development and adoption of artificial intelligence (AI) have accelerated
the need for trustworthy and responsible Al. National/international Al governance and risk manage-
ment policies and frameworks have identified a core set of tenets for trustworthy and responsible Al,
including but not limited to, fairness, safety, privacy, security, transparency, explainability, and respon-
sible deployment. Responsible Al processes/tools (RAPs) are solutions designed to operationalize
and implement the tenets, serving as a middle-layer between the tenets and real-world Al-embedded
processes. In recent years, the design of RAPs has emerged as an important avenue for computational
and social science researchers, practitioners, and policy-makers. We highlight six important research
directions for the design of RAPs. Using a real-world case study, we describe the importance of each
research direction and illustrate current challenges.

1 Overview

The impact of artificial intelligence (Al) can be viewed from the perspective of people, process, and technology. The
rise of state-of-the-art (SOTA) foundation models capable of assessment (i.e., predictive inference) and generation (i.e.,
multimodal GenAl for text, image, video, audio, etc.) has opened up a bevy of opportunities for processes conceived or
enriched by Al. Al-embedded processes are ones where advancements in AI’s ability to assess/infer and/or generate are
used to automate or augment existing, traditionally human-guided, processes. The role of — and impact on — people in
Al processes cannot be overstated. As depicted in the bottom part of Figure [T AI processes are disrupting labor supply
chains [1]] with implications for the future of work, the role of the human-in-the-loop (HITL), and the economic and
humanistic implications of exposure to Al versus substitution due to Al [2].

These advancements underscore the importance of trustworthy and responsible Al (TRAI). Guided by normative goals
and national/international Al governance and risk management frameworks and policies [3]the tenets of TRAI include:
fairness and mitigation of harmful bias; safety and alignment with legalities and human values; privacy in protecting
personal data; security and resiliency against adversarial attacks; responsible deployment to increase opportunity, access,
and productivity; transparency and accountability in design/training/alignment data and mechanisms; and explainability
and interpretability of specific model decisions, and underlying decision-making processes, respectively. Notably, this
list of TRAI tenets (depicted in the top part of Figure[I) is illustrative, not exhaustive.

"For example, NIST AI Risk Management Framework: https://www.nist.gov/itl/ai-risk-management-framework; EU AI Act:
https://artificialintelligenceact.eu/
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Figure 1: Six Research Directions for Responsible Al "By Design". The figure depicts Al processes (bottom), some
example tenets of Responsible Al (top), the need for Responsible Al processes (middle), and six challenging research
directions (red numbered circles).

Labor Supply Chains

Responsible Al processes/tools (RAPs) are solutions designed to operationalize and implement the tenets of TRAI in
Al processes. More specifically, RAPs are intended to serve as a middle-layer between the tenets and the real-world
settings in which Al manifests, by supporting key governance functions such as mapping, measuring, and managing
risks (adapted from NIST'). In recent years, the design of RAPs has emerged as an important avenue for computational
and social science researchers. From Simon’s classical “sciences of the artificial” perspective, design can be considered
a problem-solving paradigm [4] comprising the proposal of novel solutions to well-defined problems. In this case, the
problems of interest being how best to design RAPs to operationalize (i.e., map, measure, manage, and govern) the
tenets of TRAI (middle of Figure[T)). The purpose of this article is to highlight six important research directions for the
design of RAPs (numbered circles in Figure [T). Using a real-world case study, we describe the importance of each
research direction and illustrate current challenges.

2 Six Important Research Directions

We use a real-world healthcare example to guide our discussion, and to illustrate some of the nuanced challenges and
opportunities pertaining to each of the six research directions. Based on the mantra that “prevention is better than
cure,” the Al process depicted in Figure [2]relates to the use of text-message based nudges to encourage proactive health
behaviors [5]], such as not canceling an upcoming annual checkup appointment. Trained AI models are used to: (1)
predict those most likely to cancel an appointment; (2) to send messages based on users’ levels of anxiety visiting the
doctor’s office, with message content varying based on their predicted level of health literacy (anxiety and literacy are
inferred based on their prior mobile activity, survey responses, text, and/or clinical data). Lower health literacy and
high anxiety have been found to be important impediments to future doctor visits [6]. In this example, the desired
RAP is to send the Al-based nudges in a manner where the messaging is best aligned with users such that appointment
cancellations are minimized, while also adhering to the tenets of TRAI For brevity, in our example, we mostly use the
tenet of fairness (with some discussion of privacy) to illustrate the six research directions. The overarching objective of
fairness is to reduce variance in model performance across protected attributes such as demographics (e.g., age, gender,
etc.). We use fairness as our focal TRAI tenet in part because it has garnered considerable attention in the literature
[7,8]]. All results presented for this health analytics example are based on 8,502 users.
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Figure 2: Health Analytics Example to Illustrate the Six Research Directions.

2.1 Emergent Problem Space

Traditionally, design research has focused on proposing solutions to well-defined problems [4]. A problem may be
characterized as the difference between an existing state and a desired state [4], and the goal is to get from the existing
state to the desired one. How should we problematize the tenets of TRAI? If the goal (desired state) of RAPs is to
support the governance functions of mapping, measuring, and managing risks, what does the problem space look like?
When it comes to TRAI, we argue that the problem space is highly complex, emergent, and ill-defined. In regards to
fairness, one survey identified 23 types of bias, 10 definitions of fairness, and noted that reconciling and synthesizing
different perspectives of fairness into a single definition/problem space remains a top challenge [7]. Furthermore,
fairness measures of biases materializing upstream — model representational harm due to pretraining or fine-tuning — do
not correlate well with downstream allocational harm due to unfair allotment of resources or opportunities [9]. This issue
is depicted in Figure 3a, which shows gender-related fairness metrics for two anxiety and literacy inferring language
models (BERT and DeBERT) across three stages: stereotyping in pretraining, representational harm in (upstream) fine-
tuning, and allocational harm in (downstream) decision-making. Importantly, the pretraining fairness metrics (average
of SEAT-6 and SEAT-8 scores), and most of the seven upstream fairness metrics (disparate impact, etc., in the middle of
each chart), consider the biases to be in the opposite direction (positive values) relative to the downstream allocational
harm (negative values). More specifically, the pretrained stereotype and upstream representational harm fairness metrics
are suggesting that the LLMs are overly associating anxiety with female patients, however the downstream suggests
that in fact, the female patients are not receiving sufficient anxiety-alleviation text message nudges. Any upstream
fairness processes/algorithms would further exacerbate downstream misallocation (i.e., sending increasingly misaligned
quantity and types of text-message nudges to women versus men). Additionally, changes in the environment may alter
the existing and desired states and related goals [4], such as advancements in the SOTA (e.g., masked, autoregressive,
mixture-of-expert language models). The multi-faceted, non-stationary, and amorphous nature of the problem poses
challenges for the design and development of solutions.

2.2 Pareto Optimality — Is Satisficing Possible?

If the problem space were well-defined, to account for the complexity of problems, Simon [4] defined the concept of
satisficing (as opposed to optimal) solutions. A solution is satisficing if it meets aspirations along all criteria (i.e., Pareto
optimality). However, in the case of TRAI, the highly multi-faceted nature of the problem space challenges the very
notion of satisficing solutions. How should the satisfactory thresholds be defined for different criteria? Thresholds may
not be overly difficult to define for economic or technological criteria, but what about other dimensions like ethicality —
when can we consider a solution to be “ethical enough?” In the case of fairness, the protected attributes may include
demographics such as gender, race, and age, resulting in two-way and three-way interaction effects — often referred to
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Figure 3: Results from Health Analytics Example Related to Select Research Directions: (a) emergent problem space;
(b) pareto optimality; (c) beyond tradeoffs; (d) evaluation challenges for generative Al

as intersectional bias [[10} [T1]]. As the interaction combinations increase, so do the number of needed thresholds. Should
we be fairer to older men or younger women? Consequently, the potential range of biases can be amplified, whereas
the effectiveness of debiasing methods degrades [10,[1T]]. For the anxiety and literacy scoring Al models in our health
analytics example, this issue is illustrated in Figure 3b — as we add multiple protected attributes (e.g., demographics
such as age, gender, race, education, and income along the x-axis), mean disparate impact (DI), and range of DI both
increase considerably (y-axis). Importantly, this holds for fine-tuned language models (BERT), debiased language
models (DeBERT), and in-context learning LLMs (GPT-40).

2.3 Beyond Tradeoffs — Fairly Private or Privately Fair?

The prior discussion (and illustrative example) was within a single TRAI tenet, that is, satisficing within fairness. When
adding an additional tenet to the equation, the notion of satisficing breaks down completely. We intentionally use privacy
to illustrate this point because the notion of privacy is, in some respects, at least in practice, antithetical to fairness.
Fairness requires some knowledge of protected attributes (to ensure debiasing, fairer models, better alignment in LLMs,
etc.). However, privacy relates to having the ability to protect disclosure of said protected attributes. Revisiting our
health analytics example, this tension between privacy and fairness is illustrated in Figure 3c. As differential privacy
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values go up from 100 (no privacy - Figure 3b) to 0.75 (very little privacy — left charts in Figure 3c) to 0.12 (fairly
private — rightmost charts in Figure 3c), the range and mean DI increases 3 to 5 fold for the non-debiased language
models (BERT) and doubles for the debiased one (DeBERT). The example underscores the fact that although the
principles of privacy and fairness are important and complementary tenets of TRAI, their operationalizations produce
unintended and undesirable tradeoffs.

2.4 Not So Open Al

Foundation models can be grouped into three categories: open-source, open, and closed. Open-source models are ones
where the complete training data, alignment code, weights, and inference code are readily available [12} [13]. Examples
of open-source LL.Ms, which are few and far between, include Olmo, GPT-Neo, and GPT-J. Open models are ones
where the weights and inference code are available (e.g., Llama, Qwen, Deepseek). Closed models, such as GPT-4,
do not provide training weights. Under the common-task framework, science advanced considerably these past 25
years because of open source. This is especially true for rapid advancements in deep learning over the past 15 years
[12} pp. 10-11] where “it increasingly became the norm to publicly release code and datasets...”. The implications of
this reversal to not-so-open Al are evident in Figure 3a of our health analytics example, where it is difficult to surmise
the extent of bias in embeddings using SEAT scores in the pretrained GPT-4 LLM (it is absent from the chart), or the
absence of a debiased GPT-4 in Figure 3b. Researchers and practitioners would have to rely on self-reported white
papers or alternative benchmarks, as well as downstream inference-based analysis.

2.5 Evaluation Challenges for Generative Al

Whereas evaluation criteria and metrics are well-established for many inference/assessment tasks [14], and for general-
purpose text generation tasks (such as question-answering and language modeling capabilities), evaluation of generative
Al effectiveness and risks in domain and task-specific contexts remains challenging [[15}[16]. In our health analytics
example, as part of the piloting phase, let us assume we want to consider the use of generative agents to help simulate
how actual users might respond to our Al-guided nudges. Generative agents could be useful for amplifying statistical
minority samples in our testbed. For each of the 8,502 users in our testbed, we trained an agentic digital twin — an
LLM-based generative agent provided with the demographic, behavioral, and psychological attribute/trait information
of the human counterpart. The agentic LLM counterparts were trained using GPT-40 and Llama-3. We then compared
the similarity between the generative agent’s responses to anxiety and literacy-related prompts relative to those provided
by the human counterpart, and the implications of using the human versus digital twin data in downstream prediction
models. Figure 3d shows the average similarity of responses between each agent and their human counterpart, including
embedding distance and ROUGE scores, relative MSE and F1 performance of anxiety and literacy text classifiers using
agent text, relative to human text (top row), and the distribution of individual text response distance scores across the
8,502 human-agent tuples (box plots in bottom row). Looking at the results in the top row, the BERT-CLS embedding
similarities are high, and the ROUGE scores are high, suggesting high average semantic similarity between the humans
and their agentic digital twins. Similarly, replacing the human text with that of their digital twin does not overly degrade
performance for the BERT-based fine-tuned text classifiers (as evidenced by the relative F1 and MSE percentage scores).
However, when looking at the individual pair-wise similarities (bottom row), we do see considerable variance in the
effectiveness of the agentic digital twins, with a performance long tail near the bottom of the box-plots. This raises
many questions. How should we evaluate the effectiveness and risks for this use case? How do we define success?
What is acceptable variance at the individual “twin” level? How do we ensure that well-intended generative Al use
cases do not lead to unintended consequences?

2.6 Workforce Retooling - Blurring Boundaries Between Human-in-the-loop and Al-in-the-process

When workers are exposed to Al, the outcome could be enhanced augmentation and productivity gains, or worker
substitution through automation [2]]. AI automation reduces worker demand in an occupation, necessitating new
alternative occupations [1]]. In contrast, Al augmentation necessitates new skills required to undertake the modified
tasks — resulting in human-Al integrated workflows [2]. From a TRAI perspective, the (in)ability to re-skill, whether
because of Al automation or to leverage and keep pace with Al augmentation, could be an important and obvious
inclusiveness consideration. Less apparent are the potentially profound implications of Al augmentation for Al
processes, and consequently, for designing RAPs. As traditionally human-in-the-loop tasks become Al augmented
tasks, the boundaries and delineations between Al tasks and human activities become less clear. In the health analytics
example (Figure[2), the Al-guided interventions were the focus of our discussion of TRAI research directions related
to designing RAPs. However, according to Anthropic’s Economic Index report three of the occupations with the

“https://www.anthropic.com/news/anthropic-economic-index-insights-from-claude-sonnet-3-7
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highest usage of LLMs (including the extended thinking models) are computer/information research scientists, software
developers, and bioinformatics technicians. All three roles were/are central to the design of the Al processes depicted in
Figure 2] As Al becomes more ubiquitous and omnipresent — augmenting the design of models, software, systems, and
pipelines such as the big data analytics in Figure 2]— what will the design of RAPs look like when the Al-in-the-process
cannot be depicted using neat little boxes?

3 Conclusion

The purpose of this article was to shed light on important challenges and opportunities for research related to the design
of responsible Al processes/tools. Using a health analytics case study, we presented six research directions for designing
responsible Al processes (RAPs). Table[I]summarizes the research directions and some associated, concrete research
questions/avenues. Given the important role of RAPs in operationalizing trustworthy and responsible Al, by supporting
implementation of the governance functions of mapping, measuring, and managing, these directions are important for
creating bridges from policy to practice. Our coverage of the tenets of trustworthy and responsible Al are intentionally
meant to be illustrative as opposed to exhaustive. Similarly, the six research directions identified are not intended to
holistically capture all challenges and opportunities. Rather, our hope is to motivate rich research streams that usher in
a new wave of ideas and thought-leadership on the design of RAPs such that we can move closer towards realizing
trustworthy and responsible Al “by design.”
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Research Direction

Description

Example Research Questions/Avenues

Emergent
Problem Space

Can computational researchers and ethicists work
together to provide guidelines for when a solution
can be considered to be “ethical enough?”

TRAI as a problem space is highly
complex, emergent, and ill-defined,
posing challenges for the design and
development of solutions.

Can alignment/reinforcement learning with
human-feedback (RLHF) be extended to accom-
modate deeper ethical dilemmas and/or moral
reasoning?

How can designers reconcile or align perspectives
on representational versus allocational harm?

The highly multi-faceted nature of the

Should more methods/benchmarks be designed to
test interactions between different facets of a TRAI

Pareto problem space, even within a single tenet t€net (e.g., fairness)?

Optimality of TRAL challenges the very notion of  How might different designs improve satisficing
satisficing solutions. across facets?

Beyond Tradeoffs When adding an additional tenet to the  Can utility-risk frameworks be extended, and per-
equation, the notion of satisficing breaks  haps integrated into design of models and RAPs, to
down completely. allow satisfactory outcomes across TRAI tenets?

How can we develop digital twins of closed and
The trend away from open-source open-weight foundation models that approximate

Not So Open models impedes researchers and training data, alignment code, and model weights?

Al practitioners from developing and Can open-source models be scaled up to the per-
evaluating TRAI capabilities. formance levels of their closed/open counterparts?

How can we better design generative Al evalua-
. Evaluation of generative Al tions that consider real-world settings and inter-

Evaluation . s . t h tial evaluati d oth
effectiveness and risks in domain and actions, such as sequential evaluation and other

Challenges for longitudinal, dynamic field contexts?

Generative Al

task-specific contexts remains

challenging.

When should such evaluations consider average
effects versus individual or sub-group level hetero-
geneity?

Workforce
Retooling

As traditionally human-in-the-loop
tasks become Al augmented tasks, the

How can TRALI researchers design RAPs for Al
processes where the delineations between humans
and Al are less clear?

boundaries and delineations between Al
tasks and human activities become less
clear.

What should the interplay between exposure ver-
sus substitution and TRAI look like when design-
ing RAPs?

Table 1: Example Research Questions/Avenues Pertaining to the Six Directions
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