
8

A Random Walk Model for Item Recommendation in Social1

Tagging Systems2

ZHU ZHANG, Chinese Academy of Sciences3

DANIEL D. ZENG, Chinese Academy of Sciences and University of Arizona4

AHMED ABBASI, University of Virginia5

JING PENG, University of Pennsylvania6

XIAOLONG ZHENG, Chinese Academy of Sciences7

Social tagging, as a novel approach to information organization and discovery, has been widely adopted in8

many Web 2.0 applications. Tags contributed by users to annotate a variety of Web resources or items pro-9

vide a new type of information that can be exploited by recommender systems. Nevertheless, the sparsity10

of the ternary interaction data among users, items, and tags limits the performance of tag-based recom-11

mendation algorithms. In this article, we propose to deal with the sparsity problem in social tagging by12

applying random walks on ternary interaction graphs to explore transitive associations between users and13

items. The transitive associations in this article refer to the path of the link between any two nodes whose14

length is greater than one. Taking advantage of these transitive associations can allow more accurate mea-15

surement of the relevance between two entities (e.g., user-item, user-user, and item-item). A PageRank-like16

algorithm has been developed to explore these transitive associations by spreading users’ preferences on an17

item similarity graph and spreading items’ influences on a user similarity graph. Empirical evaluation on18

three real-world datasets demonstrates that our approach can effectively alleviate the sparsity problem and19

improve the quality of item recommendation.20
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1. INTRODUCTION29

In recent years, social tagging has become increasingly popular in many Web 2.030

applications, including social bookmarking (e.g., Delicious, CiteULike), music31
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recommendation (e.g., Last.fm), and video sharing (e.g., YouTube). Social tagging32

allows users to annotate and categorize a variety of resources (e.g., Web pages, songs,33

videos), generally referred to as items. Users can annotate items with descriptive34

words of their own choice, providing a novel mechanism for organizing and discover-35

ing resources. The semantic information embedded in tags constitutes an additional36

information source pertaining to the interaction between users and items. As such,37

how to best leverage tag information to enhance item recommendation performance38

is a topic that has been attracting greater attention from the recommender systems39

research community.40

Several different algorithms have been proposed for tag-based (or tag-aware) item41

recommendation. These algorithms can be divided into two main kinds. The first42

kind treats tags as new features for describing user preferences and item characteris-43

tics. These new features are then incorporated into traditional Collaborative Filtering44

(CF) [Goldberg et al. 1992] methods without using the three-dimensional correlations45

among users, tags, and items [Peng et al. 2010a; Tso-Sutter et al. 2008; Wetzker et al.46

2009; Zheng and Li 2011]. The second type of approaches keeps the three-dimensional47

correlations by using a 3rd-order tensor to model social tagging data, and then applies48

tensor decomposition methods to reveal the latent semantic associations among users,49

tags, and items [Peng et al. 2010b, 2011; Rendle et al. 2009; Symeonidis et al. 2010].50

While a number of tag-based item recommendation methods have been proposed in51

the literature, the data sparsity problem, which largely inhibits the performance of52

recommender systems, has not yet been sufficiently addressed. In the context of item53

recommendation, data sparsity can be attributable to the fact that most users only54

interact with a small percentage of items, resulting in limited user-item interactions.55

The situation is exacerbated since users only provide a small number of tags when56

annotating items they have interacted with, resulting in limited user-item-tag ternary57

interactions. As shown in Table III, the data densities (percentage of non-zero entries58

in the user-item matrix) of the Delicious and CiteULike datasets in this study are less59

than 5%, even after heavily pruning infrequent users, items, and tags. User-item spar-60

sity is caused by the fact that the items chosen by users account for only a very small61

proportion of the whole item set in real-world social tagging applications, resulting62

in sparse user-item matrices. Similarly, item-tag sparsity is caused by the fact that63

a user often intends to annotate an item with only a few tags (3∼4 on average). The64

user-item matrix will be used to compute the inter-user and inter-item similarities in65

this article, so user-item sparsity can lead to the insufficiently accurate measure of66

the inter-user and inter-item similarities. Moreover, the item-tag matrix will also be67

used to compute the inter-item similarities, so item-tag sparsity can lead to the in-68

sufficiently accurate measure of the inter-item similarities. Intuitively, using item-tag69

matrix to calculate the inter-item similarities is better than using user-item matrix,70

because tags are more semantic and descriptive than users when used as the fea-71

tures of items. These are the main differences between user-item sparsity and item-tag72

sparsity.73

In the context of social tagging, many tag-based item recommendation models that74

are based on traditional CF methods, including similarity-based and model-based75

methods, are susceptible to data sparsity issues [Ma et al. 2011]. Under sparse data,76

similarity-based [Jin et al. 2004; Linden et al. 2003; Ma et al. 2007] recommendation77

methods may fail to find a sufficient number of similar neighbors. Model-based CF al-78

gorithms [Hofmann 2003, 2004; Salakhutdinov and Mnih 2008; Si and Jin 2003] also79

have difficulty with users that have rated only a few items. This problem becomes even80

salient in tensor decomposition algorithms [Cai et al. 2011] as it requires users, items,81

and tags to co-occur simultaneously, whereas users could bookmark items without as-82

signing tags and subscribe to tags without specifying items.83
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To alleviate the data sparsity problem in the context of social tagging, we pro-84

pose a random-walk-based item recommendation model that exploits the transitive85

associations among users, items, and tags. Specifically, we first construct an item86

graph and a user graph, in which the edges linking two items and two users are87

weighted by their similarities, respectively. Throughout this article, we define the term88

“similarity” as a value measuring the distance between two nodes (users or items).89

Random walks are an effective way to explore transitive associations between nodes90

in a graph [Gori and Pucci 2007; Yildirim and Krishnamoorthy 2008], as well as to91

compute the similarity between nodes [Fouss et al. 2007]. Accordingly, we design a92

PageRank-like [Page et al. 1999] algorithm to apply multistep random walks on the93

item graph and user graph, so as to capture the transitive associations among users,94

tags, and items and obtain personalized item rankings for each user. Empirical evalu-95

ation on three real-world datasets demonstrates that our approach can efficiently alle-96

viate the sparsity problem and improve the quality of item recommendation compared97

to several benchmark methods.98

The remainder of this article is organized as follows. Section 2 briefly reviews99

prior work on tag-based recommendation and random-walk-based recommendation. In100

Section 3, we present the proposed random walk model. In Section 4, an empirical101

evaluation is presented to compare our approach with other recommendation meth-102

ods. Section 5 highlights our research contributions and describes future directions.103

2. RELATED WORK104

Three streams of work are closely related to this article: hybrid recommender systems,105

tag-based recommendation and random-walk-based recommendation.106

2.1. Hybrid Recommender Systems107

Recommender systems are usually classified into the three categories, namely content-108

based recommender systems, collaborative filtering, and hybrid recommender systems109

[Adomavicius and Tuzhilin 2005; Balabanović and Shoham 1997]. Content-based110

recommender systems use the textual features of users and items for recommen-111

dations [Si and Jin 2003; Su and Khoshgoftaar 2009], while collaborative filtering112

only uses the user-item interaction information (either explicit or implicit) such as113

ratings, purchases, and browsing history to make predictions. Hybrid recommender114

systems combine both content-based recommendation and collaborative filtering to115

make predictions.116

Hybrid recommender systems can usually be further classified into four classes117

[Adomavicius and Tuzhilin 2005]. One class of hybrid systems implements content-118

based and collaborative methods separately and then combines their predictions119

using linear addition [Bellogin et al. 2011; Claypool et al. 1999], voting [Pazzani120

1999], switching [Burke 2002], or cascading [Ghazanfar and Prugel-Bennett 2010].121

Another class incorporates content-based characteristics into collaborative models122

[Balabanović and Shoham 1997; Good et al. 1999; Vipul 2012]. A third class adds col-123

laborative characteristics to content-based models [Soboroff and Nicholas 1999]. The124

fourth class builds a general unifying model that incorporates different recommenda-125

tion methods (usually content-based and CFs) [Basu et al. 1998; Gunawardana and126

Meek 2009; Popescul et al. 2001; Wang et al. 2006]. For example, Wang et al. [2006]127

proposed a generative probabilistic framework that can unify user-based and item-128

based CF approaches by similarity fusion.129

Most of this work deal with rating data in which numerical feedbacks of users on130

items are available. However, in the context of social tagging, the “feedbacks” of users131

on items are presented in the form of tags and numerical feedbacks are absent. To132

accommodate the special nature of tagging data, we proposed a random-walk-based133
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recommendation model for tag-aware item recommendation, which uses the content134

information such as tag and user-item interaction information, and applies the basic135

ideas of user-based and item-based CF approaches in a coherent way.136

2.2. Tag-Based Recommendation137

There have been a number of studies on tag-based (or tag-aware) recommendation138

in the literature. One way is to use tag information to compute user or item similar-139

ity. This idea can be easily incorporated into existing similarity-based CF algorithms140

which recommend items similar users have purchased or items similar to those the141

active user has already purchased [Tso-Sutter et al. 2008; Zeng and Li 2008; Zhao142

et al. 2008; Zheng and Li 2011]. For example, Zeng and Li [2008] proposed two vari-143

ants of the standard user-based and item-based methods by calculating user and item144

similarities based on TF-IDF weighted tag vectors. Tso-Sutter et al. [2008] extended145

item vector for user profile and user vector for item profile with tags. They then ap-146

plied a linear interpolation method to fuse the resulting user-based and item-based147

methods.148

Except the above heuristic methods, several model-based algorithms for tag-based149

recommendation have been proposed for tag-based CF recommendation. Zhen et al.150

[2009] employed user similarities in the tag space to regularize the probabilistic matrix151

factorization procedure. Wetzker et al. [2009] presented a probabilistic Latent Seman-152

tic Analysis (PLSA) model capturing both the item-user and item-tag co-occurrence153

information for recommendation. Zhang et al. [2010] proposed a recommendation al-154

gorithm based on an integrated diffusion on user-item-tag tripartite graphs. Peng155

et al. [2010b] presented a joint item-tag recommendation framework, which explic-156

itly pointed out the topical interests of users in the recommended items and made full157

use of all available interactions among users, items, and tags. In addition, a framework158

named Collaborative Filtering with Unlabeled Items (CFUI) [Peng et al. 2010a] was159

proposed to deal with the sparsity problem by making effective use of unlabeled items.160

A recent book [Marinho et al. 2012] summarizes the state of the art of recommenda-161

tion techniques for social tagging systems. This book introduces the recent advanced162

technologies (e.g., tensor factorization, relational classifier, and exploring the content163

of resources and social relations, etc.) used in the tag recommendation of social tagging164

systems. Some of these advanced technologies, such as tensor factorization, can also165

be used for item recommendation in social tagging systems; the research problem ex-166

plored in this article. For instance, Nanopoulos et al. [2010] exploited the HOSVD167

model combined with music similarity based on audio features to leverage the la-168

tent ternary structure of social tagging systems for personalized music recommenda-169

tion. Guy et al. [2010] proposed a personalized item recommendation algorithm based170

on people and tags with an enterprise social media application suite that included171

blogs, bookmarks, communities, wikis, and shared files. The content of resources [Jeon172

et al. 2011; Li et al. 2008] and social relations [Jiang et al. 2010; Liu et al. 2010] men-173

tioned in the Marinho et al. book also can be used for the computation of item and174

user similarities in our proposed approach. The proposed approach is based on ran-175

dom walks applied to the associations among the user-item, user-tag, and item-tag176

bipartite graphs. It is different from tensor factorization applied to the 3rd-order ten-177

sor representation of social tagging systems in Nanopoulos et al. [2010]. Similarly, the178

social relation (e.g., friendship, organizational relation etc.) in Guy et al. [2010] is not179

used in the proposed paper, but it could be incorporated into our model by combining180

it with user similarity (a possible future direction).181

The sparsity problem limits the performance of recommender systems both in the182

conventional user-item setting and in the context of social tagging systems. How-183

ever, there has been limited research dealing with the sparsity problem in the context184
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of social tagging. Compared with these methods mentioned previously, our method185

leverages the transitive associations that are ignored in these methods to deal with186

the sparsity problem.187

2.3. Random-Walk-Based Recommendation188

Random walk on graph is an effective way to compute the similarity between nodes189

[Fouss et al. 2007] and explore transitive associations between nodes [Gori and Pucci190

2007; Jamali and Ester 2009; Yildirim and Krishnamoorthy 2008]. Random walk191

models have been used in recommender systems in several different ways. Fouss192

et al. [2007] presented a computing method on random-walk-based similarity between193

nodes of a graph with application to collaborative recommendation. Gori and Pucci194

[2007] presented a biased PageRank-like scoring algorithm named ItemRank, which195

can be used to rank products according to expected user preferences. Yildirim and196

Krishnamoorthy [2008] proposed an item-oriented recommendation algorithm that197

used random walk to calculate item similarity matrix.198

The experiments in Huang et al. [2004] and Yildirim and Krishnamoorthy [2008]199

empirically showed that transitive associations are a valuable source of information200

worthy of being explored to deal with the sparsity problem. In Huang et al. [2004],201

they model the user-item interaction in bipartite graphs. One set of nodes represents202

users, and the other set of nodes represents items. The links connecting nodes be-203

tween these two sets represent the transactions of users. Then they treat collaborative204

filtering as associative retrieval on the user-item bipartite graph, and apply several205

spreading activation algorithms to generate transitive associations between users and206

items. Although our work also explores the transitive associations between nodes, we207

do not only use the transitive associations between users and items. Instead, we ap-208

ply random walk model to explore the transitive associations among users, items, and209

tags.210

In the context of social tagging, there are some researches using random walk211

model to explore transitive associations among nodes [Bogers 2010; Hotho et al. 2006;212

Konstas et al. 2009]. Hotho et al. [2006] proposed a PageRank-like search and ranking213

algorithm for folksonomies. In their study, only one graph consisting of users, items,214

and tags was built; they then presented a new algorithm, called FolkRank, that takes215

into account the folksonomy structure for ranking search requests. Bogers [2010]216

presented ContextWalk, a recommendation algorithm that can include different217

types of contextual information. It models the browsing process of a user on a movie218

database website by taking random walks over the contextual graph consisting of219

users, items, tags, genres, and actors.220

Our approach differs from prior work in several ways. First, while many studies221

[Fouss et al. 2006; Yildirim and Krishnamoorthy 2008] did not consider the effect of222

tags on recommendation quality, our method exploits social tagging information in the223

proposed random walk model. Second, the graph structures utilized by Bogers [2010]224

and Hotho et al. [2006] are different from the item graph and user graph used in this225

article; users, items, and tags are all represented as nodes in a single, larger graph226

in their paper. Consequently, despite using the same data sets, the size and structure227

(i.e., quantity and types of nodes) used in their study were considerably different from228

those employed in our article. This is an important distinction since larger graphs can229

dramatically increase run times (e.g., those associated with matrix multiplication of230

the transition probability matrix when computing random walks), thereby making cer-231

tain algorithms computationally infeasible on larger data sets. Third, Gori and Pucci232

[2007] and Yildirim and Krishnamoorthy [2008] only constructed an item graph and233

didn’t consider the effect of tags on recommendation quality. Our method not only em-234

ploys random walk, but also incorporates tag information into the building process of235
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Table I. Notations

Notation Description
Ui The ith user in the user set U
Ij The jth item in the item set I
Tk The kth tag in the tag set T
UIij The element in the user-item matrix UI, if user i saves item j, it

equals one, and otherwise zero
UTik The element in matrix user-tag UT, it equals the frequency of tag k

used by user i
ITjk The element ITjk in item-tag matrix IT, it equals the frequency of tag

k assigned to item j.
Mnorm A stochastic matrix generated by normalizing each row of the matrix

M to be of unit length
Mi· The ith row vector of the matrix M
M·j The jth column vector of the matrix M
Sitem Item similarity matrix
Suser User similarity matrix
UIfinal Item ranking matrix of each user

Fig. 1. The user-item, user-tag, and item-tag bipartite graphs.

an item graph and a user graph using a probabilistic method. Details regarding our236

method are provided in the following section.237

3. RANDOM-WALK-BASED RECOMMENDATION MODEL238

In this section, we first provide an overview of our approach, focusing on how to exploit239

the transitive associations to alleviate the data sparsity problem of collaborative filter-240

ing. Then, we present the details of the random walk model for item recommendation.241

3.1. Model Overview242

A social tagging system consists of three main components: users, tags, and items. In243

this study, we represent a social tagging system using three bipartite graphs depicted244

in Figure 1, since such bipartite graphs can explicitly represent the user-item, user-245

tag, and item-tag relations. Table I lists all notations used in this article:246

In order to provide readers with a good sense of item recommendations in real-world247

social tagging systems, we use the well-known bookmark site CiteULike as an exam-248

ple. In Figure 2, users (e.g., zhuzi) can use their preferred words (termed as tags in the249

social tagging system) such as academia, career etc. to annotate the papers or URLs250

(termed as items) that they are interested in, such as the paper titled Future impact:251

Predicting scientific success. When users’ tagging histories are collected and analyzed252

by the recommender system, the recommender system can predict which papers or253

ACM Transactions on Management Information Systems, Vol. 4, No. 2, Article 8, Publication date: August 2013.



A Random Walk Model for Item Recommendation in Social Tagging Systems 8:7

Fig. 2. A snapshot from CiteULike that illustrates a user’s tagging behavior in a social tagging system.

Fig. 3. A snapshot from CiteULike that illustrates the item recommendations generated in a social tagging
system.

URLs users may like. Figure 3 presents the papers recommended by the recommender254

system of CiteULike.255

In this study, we treat the problem of item recommendation as a link prediction256

task aiming to predict the strengths of the unknown associations between users and257

items. We propose to deal with the sparsity problem in social tagging by applying258

random walks on ternary interaction graphs to explore transitive associations between259

users and items. Taking advantage of these transitive associations can allow more260

accurate measurement of the relevance between two entities (e.g., user-item, user-user,261

and item-item). Furthermore, we design a PageRank-like algorithm to explore these262

transitive associations by spreading users’ preferences on an item similarity graph and263

items’ influences on a user similarity graph. The proposed algorithm can result in a264

personalized item rank for each user, and then the top-N item recommendation can be265

generated by sorting the items in descending order of ranking scores.266

Transitive associations can be explored to alleviate the sparsity problem in item267

recommendation. In social tagging systems, users tend to annotate a small number268

of items with a few tags, consequently the quantity of direct user-item, item-tag, and269

user-tag interactions is sparse. Here, direct interaction means there is no intermediate270

entity between one entity (e.g., user, item, or tag) to another entity. However, one271

entity can reach another entity through other entities, whose path is termed as272

a transitive association in this article. Specifically, if we take into account these273

transitive associations when measuring the relevance between two entities, transitive274

associations as the hidden interaction information can add more information in275
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the measurement of the relevance between any two entities. Therefore, transitive276

associations can make the relevance measure between any two entities more accurate.277

In the context of item recommendation for social tagging, inter-item and inter-user278

similarities can be measured more accurately, which leads to the alleviation of the279

sparsity problem and the improvement of recommendation performance.280

The intuition on how transitive associations can alleviate sparsity can be explained281

by the following example. In Figure 1, we need to compute the strength of the con-282

nections between U1 and I1 before we can recommend I1 to U1. Since U1 already has283

an edge with I2, first, we can find some of the associations between I1 and I2 in the284

item-tag (e.g., I1 − T1 − I2 and user-item graphs (e.g., I1 − U3 − I3 − U2 − I2). The path285

I1−U3−I3−U2−I2 is one of the transitive associations between I1 and I2. Then we can286

get some of the connections between U1 and I1 by connecting U1 − I2 with I1 − T1 − I2287

(or I1 −U3 −I3 −U2 −I2), resulting in: I1 −I2 −T1 −I1 or U1 −I2 −U2 −I3 −U3 −I1. Such288

associations, which are often ignored in many recommendation models, allow the rep-289

resentation of otherwise hidden relations among users, items, and tags. In this exam-290

ple, these transitive associations can enhance the accuracy of the relevance measure291

between U1 and I1, thereby alleviating the problem of diminished recommendation292

quality attributable to data sparsity.293

Random walk on graph is an effective way to explore transitive associations between294

nodes [Gori and Pucci 2007; Yildirim and Krishnamoorthy 2008] and compute the sim-295

ilarity between nodes [Fouss et al. 2007]. A random walk over a graph is a stochastic296

process in which the initial state is known and the next state is governed by a tran-297

sition probability matrix that indicates the likelihood of jumping from node i to node298

j in the graph [Bogers 2010]. According to the definition of the transition probability299

matrix, one-step transition probability matrix indicates that the probability from one300

node to another node without any intermediate node. Moreover, multi-step transition301

probability matrix indicates the probability from one node to another node through302

other intermediate nodes. Therefore, the strength of transitive associations between303

any two nodes can be measured by random walk on a graph. The intuition about how304

the transitive associations are captured by random walk on a graph can be explained305

by the following example. In a directed graph consisting of four nodes (e.g., A, B, C,306

and D), the weight of a link between two nodes indicates the transition probability307

from one node to the other. Suppose node A has no direct link to node D, but has a308

link to node C. Also suppose node A has a link to node B; node B has a link to C; and309

node C has a link to D. This easy graph only has these four links. Then there are two310

directed transitive associations starting from node A to node D that are A → C → D311

and A → B → C → D. A random walker starting from node A can reach node D after312

three steps random walk with a probability that equals the product of the weights of313

the links in the path A → B → C → D.314

The proposed random-walk-based recommendation model has two underlying315

assumptions.316

— One is that each user will choose new items similar to the ones they have chosen in317

the past.318

— The other is that users will choose new items that were previously selected by simi-319

lar users (i.e., ones with other common items).320

The first assumption is based on standard content-based recommendations while321

the second assumption is based on collaborative filtering recommender systems. In322

response to the first assumption, we construct an item graph, in which each edge be-323

tween two item nodes is weighted by their similarity. Then, the item similarity matrix324

is treated as the transition probability matrix of the random walk on the item graph325

and the saved item nodes of a user, indicating the user’s preference, are used as the326
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starting nodes of a random walker on the item graph. After the user wanders on the327

item graph according to the transition probability, the user can reach the item nodes328

that connected to the initial item nodes with the transitive associations. This means329

that the transitive associations between the user and other items can be captured by330

random walks and the user’s preference has spread on the item graph. Subsequently,331

random walks on the item graph will generate a vector for each item that signifies332

users’ preference degrees for the items.333

In response to the second assumption, a user graph is constructed in a manner sim-334

ilar to how the item graph is built. Then, the user similarity matrix is treated as the335

transition probability matrix of the random walk on the user graph, and the initial336

users of each item before random walk are used as the starting nodes of the random337

walk on the user graph of this item. After the item wanders on the user graph ac-338

cording to the transition probability, the item can reach the user nodes that connected339

to the initial user nodes with the transitive associations. This means that the transi-340

tive associations between the item and other users can be captured by random walks341

and the item’s influence to users has spread on the user graph. Subsequently, random342

walks on the user graph will generate a vector in the space of the user that can predict343

the probabilities of the different users’ choices for that item.344

In our recommendation algorithm, we use linear interpolation to combine the rank-345

ing scores of items for each user, which result from the random walk on the item graph346

and the random walk on the user graph. Finally, the proposed algorithm can result in347

a personalized item rank for each user, and then the top-N item recommendation can348

be generated by sorting the items in descending order of ranking scores.349

3.2. Random-Walk-Based Item Recommendation350

3.2.1. Tag-Based Item Recommendation Algorithm. The proposed item recommendation351

algorithm is similar to personalized PageRank [Page et al. 1999] in the sense that352

both of them employ random walk to rank nodes of a graph. PageRank uses the353

Markov chain to model the process of the random walk on the web graph consisting354

of a large number of pages as nodes. It assumes that a random surfer will randomly355

jump to another page j from the current page i with transition probability p(j|i), which356

is determined by the structure of web hyperlinks, and forms the transition probability357

matrix P. After a long run, the stationary probability of staying at some page f358

reflects the authority of the page f . The formulation for PageRank can be described as359

follows.360

π(t) = α · π(t − 1) · P + (1 − α) · ν, (1)361

where π is the row vector of the ranking score of nodes, P is the transitional probabil-362

ity matrix in which every row sums up to 1. α is a tunable decay factor that is between363

0 and 1. The row vector v also sums up to 1 and has non-negative entries, and it can be364

used to bias PageRank to be topic sensitive or personalized. The PageRank algorithm365

will result in a global ranking of the authority of nodes. As to recommendation366

algorithm, we need a personalized ranking of items for each user.367

The procedure of random-walk-based item recommendation algorithm is depicted368

in Table II. The computation of item similarity matrix Sitem and user similarity ma-369

trix Suser is discussed in the Section 3.2.2. The equation at line 6 of Table II reflects370

the random walk on the item graph, and the equation at line 10 reflects the random371

walk on the user graph. UIitem and UIuser are the item-centric and user-centric pre-372

dicted ranking matrices, respectively. The parameters η and λ are the damping factors373

that are between 0 and 1. Larger values of these two parameters increase the impor-374

tance of the transitive associations captured by the multi-step random walks. However,375
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Table II. The Procedure of Random-Walk-Based Item Recommendation

Algorithm: random-walk-based item recommendation
1: Input: UI, Sitem, Suser, q // q is the number of iterations
2: Output: UIfinal
3: UIitem(0) = UIuser(0) = UI = UInorm // UI is a temporary variable
4: for t ← 0 to (q-1) do
5: for i ← 0 to (m-1) do // m is the number of users
6: UIitem

i· (t + 1) = η · UIitem
i· (t) · Sitem + (1 − η) · UIi·

7: end
8: for j ← 0 to (n-1) do // n is the number of items
10: UIuser

·j (t + 1) = λ · Suser · UIuser
·j (t) + (1 − λ) · UI·j

11: end
12:end
13: UIfinal = μ · UIitem(q) + (1 − μ) · UIuser(q)

Fig. 4. An illustration of random walks on the item graph.

lengthier multi-step transitive associations may be not helpful for the recommenda-376

tion performance of the proposed method. Every row vector of UI at line 6 and 10 is377

the preference vector of the corresponding user. When UIitem(t) and UIuser(t) reach the378

acceptable optimal performance, we can get the final predicted user-item score matrix379

UIfinal by fusing them with the use of the linear combination. With respect to the num-380

ber of iterations, we will discuss its impact on the recommendation performance in381

Section 4.3.382

When we extend the equation at line 6, we can get Eq. (2). From the following equa-383

tion, we can see that the transitive associations between items are represented by the384

power of item similarity matrix (ηSitem)k. It means that the transitive probability of385

k steps random walks on the item graph can be obtained from (ηSitem)k. We illustrate386

random walks on the item graph with Figure 4. As shown in Figure 4, the items are387

connected by the arrowed lines whose weights are the transitive probabilities. U1 is388

represented by the first row of the user-item matrix UI, that is U1 = [0, 0, 1, 0]. Start-389

ing from I3, U1 (as a random walker) can reach I2 and I4 directly after a one-step390

random walk, and get to I1 with the paths I3 → I2 → I1 after two-step random walks.391

Additionally, U1 can reach I2 with the paths I3 → I2 → I2 and I3 → I3 → I2, and reach392

I4 with the paths I3 → I3 → I4 and I3 → I4 → I4 after two-step random walks. Note393

that a random walker can remain in its current position with a certain probability. In394

this illustration, we ignore the paths for which the starting point and end point are I3,395

since we don’t need to predict the ranking score of I3. Likewise, when we extend the396

equation at line 10, we can get the following Eq. (3). From the following equation, we397
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can see that the transitive associations between users are represented by the power of398

user similarity matrix (λSuser)k:399

UIitem
i· (t + 1) = UIitem

i· (0) · (ηSitem)t+1 + (1 − η)UIi·
t∑

k=0

(ηSitem)k (2)400

401

UIuser
·j (t + 1) = (λSuser)t+1 · UIuser

·j (0) + (1 − λ)

( t∑
k=0

(λSuser)k

)
UI·j. (3)402

If the iteration is infinite, we can get the following two equations that are the matrix403

notation of two equations.404

UIitem = (1 − η)UI
∞∑

k=0

(ηSitem)k = (1 − η)UI(1 − ηSitem)−1 (4)405

406

UIuser = (1 − λ)

( ∞∑
k=0

(λSuser)k

)
UI = (1 − λ)(1 − λSuser)−1UI. (5)407

Interestingly, the two equations
∞∑

k=0
(ηSitem)k = (1 − ηSitem)−1 and

∞∑
k=0

(λSuser)k =408

(1 − λSuser)−1 are the von Neumann diffusion kernels [Fouss et al. 2006] of item graph409

and user graph. In Eqs. (4) and (5), all the transitive connections between items and410

users are captured. However, if we directly make use of the above two equations, we411

need to compute the inverse of the matrix. From the Eqs. (2) and (3), we can see that412

item-based CF and user-based CF are the specific cases of Eq. (2) and Eq. (3) respec-413

tively, when the number of iterations t equals to zero. After we get the ranking matrix414

UIfinal, we select top-N ranked items that have not been saved for each user, by sorting415

the ranking scores in the descending order.416

3.2.2. Item and User Similarities. In this section, we discuss how to compute the item417

and user similarity matrices. In the proposed method, the similarity computation is an418

important step, since different similarity computation methods may result in varying419

recommendation performance. Unlike the numeric rating data found in traditional420

recommender systems (e.g., scaling from 1 to 5 or 10), the elements in the user-item421

matrix are binary. The commonly used similarity methods such as Pearson Correlation422

Coefficient and adjusted cosine similarity [Sarwar et al. 2001] fail, because both the423

numerator and the denominator in the formulas equal zero. Therefore, we present a424

probability-based method for similarity computation, and also briefly introduce the425

cosine similarity in the previous literature for comparison. These two methods are426

described as follows.427

Probability-Based Similarity. As proposed by Deshpande and Karypis [2004], each428

row of the binary user-item matrix is normalized to be of unit length in the computa-429

tion of item similarity. Consequently, customers that have purchased more items will430

tend to contribute less to the overall cosine similarity between items. This gives em-431

phasis to the purchasing decisions of the customers that have bought fewer items. In-432

spired by the idea of normalization, we propose a probability-based similarity method433

for deriving the item similarity method, and we incorporate IT and UI into the calcu-434

lation of item similarity. Because IT contains the content information of items and UI435

contains the user-item interaction information, we expect that the integration of the436
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two will be more effective for computing the similarity between items. The resulting437

formulation for probability-based item similarity is as follows:438

Sitem = α · ITnorm · (ITT)norm + (1 − α) · (UIT)norm · UInorm,439

where α is a tunable parameter that is between 0 and 1. It can control the weight of IT440

and UI in the computation of item similarity. The ‘·’ denotes the dot-product operation.441

Since the calculation rationale for both parts of the equation (i.e., the IT part and the442

UI part) is identical, we simply illustrate using ITnorm · (ITT)norm as an example. We443

can get the probability from one item to all the tags from the row vectors of ITnorm and444

the probability from one tag to all the items from the row vectors of (ITT)norm. Then,445

the similarity between item i and item j can be computed as the dot-product of the446

ith row vector of ITnorm and the jth column vector of (ITT)norm, which represents the447

probability that item i jumps to item j through all of the tags. Likewise, we can com-448

pute the user similarity matrix as follows. Sitem and Suser can be directly used as the449

transition probability matrix of the item and user graphs respectively, because twice450

normalization operations in the similarity computation make them become stochastic451

matrices.452

Suser = β · UTnorm · (UTT)norm + (1 − β) · UInorm · (UIT)norm.453

Cosine Similarity. Cosine similarity is a commonly used way of computing similar-454

ity between two items or users in recommender system. We first represent each item455

or user as a vector, and then treat the cosine value between the two vectors as the456

similarity value. Formally,457

sim(i, j) = cos(νi, νj) = νi · νj

‖νi‖2‖νj‖2
,458

where “·” denotes the vector dot-product operation. With the use of this formula, we459

can get the similarity between item i and item j.460

sim(Ii, Ij) = α · cos(ITi·, ITj·) + (1 − α) · cos(UI·i, UI·j)461

Then, we can get the item similarity matrix S̃item whose element S̃item
ij equals462

sim(Ii, Ij). Afterwards, we need to normalize each row of S̃item to be of unit length,463

and then the normalized item similarity matrix Sitem can be used as the transition464

probability matrix of the item graph. Likewise, we can get the similarity between user465

i and user j as well as the normalized user similarity matrix Suser
466

sim(Ui, Uj) = β · cos(UTi·, UTj·) + (1 − β) · cos(UIi·, UIj·).467

The user-item, item-tag, and user-tag matrices are usually very sparse. However,468

the item and user similarity matrices become less sparse due to the matrix multiplica-469

tion and addition in the computation. Moreover, during each iteration of the proposed470

algorithm, the item-centric ranking matrix UIitem is multiplied by the item similarity471

matrix Sitem; UIitem then become less sparse after the matrix multiplication. The user-472

centric ranking matrix UIuser is similar to UIitem. With respect to the time complexity473

of the generation of item recommendation, we can select the k largest elements of each474

row of the item and user similarity matrices and set the reminder elements smaller475

than the k largest elements to zeros.476

3.2.3. Computational Complexity. The time complexity of the proposed method contains477

two parts. One is the time complexity for the computation of item and user similar-478

ity matrices as well as the selection of the most similar items and users. The other is479
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the time complexity for the random-walk-based recommendation. The upper bound on480

the time complexity for the computation of the item similarity matrix is O(mn2 + ln2),481

while the upper bound on the time complexity for computing the user similarity matrix482

is O(nm2+lm2). Since the user-item, item-tag, and user-tag matrices are very sparse in483

real-world applications, we can reduce the computational complexity by using sparse484

data structures to store the sparse matrices and to calculate the multiplication of the485

sparse matrices. Fortunately, this part can be computed offline. The time complexity486

of the random-walk-based recommendation is O(qmkn). Because the number of itera-487

tions q and the number of the most similar items (users) k is too small in comparison488

with the number of users m and the number of items n, the time complexity of the489

online part is O(mn).490

4. EMPIRICAL EVALUATION491

In this section, we evaluated the proposed method by using three tagging datasets from492

real-world social tagging systems and conducted different experiments to address the493

following questions: (1) How effective is the proposed random-walk-based algorithm494

under sparse data, compared with other benchmark methods? (2) Which is more ef-495

fective in the computation of similarity, tagging information or user-item interaction496

information? (3) Is probability-based similarity more effective than cosine similarity497

in our recommendation model? (4) How do the parameters impact the performance of498

the proposed algorithm?499

4.1. Dataset500

Three different datasets are used to test our approach. The first dataset is the BibSon-501

omy dataset1 that is widely used in the tagging domain (the 2009-07-01 snapshot is502

used in this article). The BibSonomy dataset includes bookmarks for both general web503

resources and bibliographies, of which only the part for general web resources was used504

in our experiment. The second dataset is a snapshot of the CiteULike database2 that505

is downloaded on 1/21/2010. The transactions in 2009 were collected and contained506

3,390,000 transactions from 27,160 users on 926,721 bibliographies with 247,452 tags.507

The third dataset was crawled from Delicious on which users can post their favorite508

URLs and share them with their friends. The collected dataset contains bookmark-509

ing data of 5,000 users dated from 6/1/2008 to 12/31/2008. We identified these 5,000510

users by using a breadth-first approach to traverse the Delicious user network, start-511

ing from a small set of randomly selected seed users. This datasets includes 3,622,279512

transactions from 5,000 users on 653,690 bookmarks with 203,983 tags.513

During data preprocessing, take the small Delicious dataset for example, we514

iteratively removed users that had saved less than 15 items and items that had been515

saved by less than 15 users (termed as unqualified items) until the percentage of516

unqualified items were less than 2% for each (filtered) dataset. Table III contains the517

specific thresholds for the other two datasets. In addition, the Snowball stemmer3
518

(Porter 2) was used to stem each tag by eliminating the effect of word variations. For519

computational efficiency, in each testbed, we only considered tags that had been used520

more than 10 times in the filtered training set. If a <user, item> co-occurrence did not521

involve any frequent tags, we set the tag entry as null but did not remove it. This was522

the key difference between our preprocessing method and the approach undertaken523

with the k-core pruning strategy [Jäschke et al. 2008]. This difference enabled us to524

1http://www.kde.cs.uni-kassel.de/bibsonomy/dumps
2http://www.citeulike.org/faq/data.adp
3http://snowball.tartarus.org/
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Table III. Dataset Description

Dataset BibSonomy CiteULike Delicious
(small)

Delicious
(large)

Number of users: m 125 338 548 1097
Number of items: n 388 392 1080 1872
Number of selected/total tags: l 78/2311 52/2822 379/12067 526/9608
Number of total transactions: p 4383 6031 28591 44599
Data density: p/(mn) (%) 9.04 4.55 4.83 2.17
Avg. number of items per user 35.06 17.84 52.17 40.66
Avg. number of users per item 11.30 15.39 26.47 23.82
Number of items per user >=10 >=5 >=15 >=10
Number of users per item >=8 >=10 >=15 >=10
Frequency of selected tag >=10 >=10 >=10 >=10

process transactions without assigned tags. Table III summarizes the statistics for the525

cleaned datasets.526

4.2. Evaluation Metrics527

To evaluate the quality of the proposed algorithm, we randomly selected a certain528

percentage associated with the saved items of each user to form the training dataset,529

and withheld the remainder as test data. During the training phase, the model was530

built based on the training data collected from all users. During the prediction phase,531

we recommended N items to each user and then compared them with bookmarks in the532

test set. To make sure that the experiment results were not sensitive to the partition533

of each dataset, we performed 10 runs for each experiment, each time using a different534

random split. The results reported in the rest of the article are the average of the 10535

trials.536

The evaluation metrics in this paper are ones commonly employed in prior rec-537

ommender system research [Herlocker et al. 2004], and include precision, recall, F-538

measure, and rankscore [Breese et al. 1998]. For each user, precision equals that the539

number of correct item recommendations divided by the number of all N item rec-540

ommendations, where correct recommendations refer to those items appearing in the541

target user’s test set. Recall equals the number of correct item recommendations di-542

vided by the number of test items. F-measure is a composite measure of the harmonic543

mean between precision and recall. We adopted the F1 measure in our experiment in544

order to pay equal attention to precision and recall.545

Rankscore measures the ranking quality of a ranked list as compared to the ideal546

item list. The rankscore measure assumes that each successive item in a list is less547

likely to be viewed by the user with an exponential decay. In this metric, the expected548

utility of a ranked list of item recommendations for user i is defined as Ri = ∑
j

(
qj
j−1

2h−1

)
,549

where j indicates the index of an item in the predicted ranked list, and qj equals value550

1 if the jth item is actually saved by the active user, and otherwise 0. The parameter551

h is the viewing half-life (the rank of the item on the list such that there is a 50%552

chance the user will save that item), which was set to 10 in our experiments. The final553

recommendation utility score of user i is 100 · Ri
Rmax

i
, where Rmax

i equals
∑
j

(
1

j−1
2h−1

)
and554

is the maximum achievable utility if all the item recommendations of user i had been555

at the top of the ranked list.556
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Table IV. Formula of Evaluate Metrics

Metric Formula
Precision Nhit/Nrec
Recall Nhit/Ntest

F-measure 2 · precision·recall
precision+recall

Rankscore 100
∑
j

(
qj

j−1
2h−1

)
/
∑
j

(
1

j−1
2h−1

)

Table V. Experimental Result on BibSonomy

BibSonomy
Algorithm Precision Recall F-measure Rankscore
RAND 6.82 1.19 2.02 6.81
UB 13.90 2.84 4.72 14.20
IB 10.90 2.38 3.90 11.08
FUS 18.88 4.15 6.81 18.96
PLSA 15.94 3.27 5.43 16.24
TagiCoFi 15.17 3.03 5.04 15.19
RW-IT 18.93 3.94 6.52 19.41
RW-UT 16.66 3.27 5.46 17.01
RW-UI 16.70 3.52 5.81 17.02
RW 19.97 4.26 7.01 20.55

Formal definitions of these four metrics are summarized in Table IV, where Nhit557

indicates the number of correct recommendations, Nrec indicates the number of558

recommendations, and Ntest indicates the number of items in the active user’s test559

set. Note that all of them are used for each user, and the final value in each trial is the560

average across all the users.561

4.3. Results562

We compared the proposed approach with six other approaches. The RAND algorithm563

generated random recommendations for every user. The classical user-based (UB)564

[Breese et al. 1998; Resnick et al. 1994] and item-based (IB) [Sarwar et al. 2001] meth-565

ods were implemented as baselines. Since there are no rating data in social tagging566

systems involved in this article, UB and IB are not exactly the same as the original567

algorithms. In our implementation of UB, the ranking score of the active user for the568

target item equals the sum of the cosine similarity scores with him/her of the active569

user’s neighbors. In our implementation of IB, the ranking score of the active user for570

the target item equals the sum of the cosine similarity scores with the target item of571

the items most similar with the target item. The other three methods were tag-based572

recommendation methods: the fusion (FUS) [Tso-Sutter et al. 2008], PLSA [Wetzker573

et al. 2009], and the TagiCoFi [Zhen et al. 2009] methods. The RW variants of the574

RW method. RW-IT only used the IT matrix in the computation of item and user sim-575

ilarities. Similarly, RW-UT only used the UT matrix, and RW-UI only utilized the UI576

matrix. However, RW usually used all of the IT, UT, and UI matrices.577

To investigate the capability of the proposed approach under sparse data, for each578

user we randomly select only 20% of the bookmarks for the training set and withheld579

the remaining 80% of the data for testing on the 10 random data splits. Note that580

when we tuned a given parameter for the proposed method and the baseline meth-581

ods, the other parameters were fixed. As we observed that the relative performances582

of these implemented algorithms are generally consistent across different evaluation583
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Table VI. Experimental Result on CiteULike

CiteULike
Algorithm Precision Recall F-measure Rankscore
RAND 3.91 1.32 1.97 3.88
UB 11.01 4.63 6.52 11.40
IB 7.67 3.43 4.47 7.80
FUS 12.67 5.28 7.45 12.80
PLSA 12.97 5.19 7.40 13.32
TagiCoFi 8.05 3.11 4.46 8.21
RW-IT 14.61 6.05 8.55 14.96
RW-UT 10.71 4.29 6.12 11.04
RW-UI 10.70 4.56 6.39 11.10
RW 15.18 6.32 8.91 15.55

Table VII. Experimental Result on Delicious (small)

Delicious (small)
Algorithm Precision Recall F-measure Rankscore
RAND 3.88 0.46 0.82 3.88
UB 25.76 3.56 6.25 26.36
IB 13.66 1.98 3.45 13.65
FUS 29.82 4.37 7.62 30.27
PLSA 29.61 4.44 7.72 30.40
TagiCoFi 12.99 1.29 2.35 13.33
RW-IT 32.56 4.92 8.55 33.17
RW-UT 25.10 3.65 6.37 25.79
RW-UI 27.99 3.94 6.91 28.53
RW 32.69 4.93 8.57 33.29

metrics, we used precision as performance metric when tuning the parameters. Due584

to computational constraints associated with traversing the entire parameter space in585

order to attain optimal parameter settings, the reported results in these tables are not586

optimal. Moreover, when we tuned different parameters for any algorithm, this algo-587

rithm was then run again on the same data. Tables V, VI, VII, and VIII summarize588

the experimental results of top 5 recommendations on the four different real-world589

datasets. Note that except for rankscore, all values in these tables are showed in per-590

centage.591

As shown in Tables V, VI, VII, and VIII, RW-IT outperformed RW-UI, demonstrating592

that the tagging information was more effective than the transactional information593

in the computation of item similarity. However, the difference between the results for594

RW-UT and RW-UI were not significant, implying that the tagging information didn’t595

outperform the transaction information in the computation of user similarity. The596

combination of tag information with the transitive associations among users, tags,597

and items enabled RW to outperform all comparison methods on all of evaluation598

conditions. According to an ANOVA test, RW was significantly better than the other599

algorithms including UB, IB, PLSA, FUS, and TagiCoFi, with p < 0.001 on all600

evaluation metrics for all four datasets except for FUS on the BibSonomy and601

Delicious (large) datasets. It is also important to note that the results of RW-IT602

and RW were similar. This indicates that the item-tag interaction information was603

more important than user-item and user-tag interaction information in the proposed604

random-walk-based model.605
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Table VIII. Experimental Result on Delicious (large)

Delicious (large)
Algorithm Precision Recall F-measure Rankscore
RAND 1.78 0.27 0.47 1.77
UB 4.51 0.67 1.17 4.58
IB 2.74 0.43 0.74 2.73
FUS 7.47 1.22 2.10 7.49
PLSA 5.78 0.91 1.57 5.83
TagiCoFi 3.28 0.51 0.88 3.27
RW-IT 7.26 1.19 2.05 7.33
RW-UT 5.98 0.98 1.69 6.11
RW-UI 4.04 0.62 1.07 4.07
RW 7.43 1.24 2.12 7.56

Another interesting observation was that UB was significantly better than IB in606

these four datasets. We believe that this is related to the characteristics of the datasets,607

in which the average number of items per user was more than the average number of608

users per item. As a result, it was more accurate to form user neighbors than item609

neighbors. To investigate the performance of our approach at different density levels,610

we also conducted an experiment on the CiteULike dataset. We changed the ratio of611

the training set to the whole dataset and obtained different density levels, as done612

by Yildirim and Krishnamoorthy [2008]. In other words, a training set ratio of 0.1613

meant that 10% of the entire dataset was used for training. For each training set ratio,614

ANOVA tests were run across the 10 trials, and the p-values were used to compare the615

statistical significance of performance differences between methods. Figure 5 summa-616

rizes the experimental results. Since the relative difference between the methods in617

the above experiment on the values of these four evaluation metrics was consistent,618

we only tested the performance difference using the precision metric. Additionally, we619

omitted the experiment results for the top 20 recommendations, since they were very620

similar to the results reported for the top 10 recommendations. As shown in Figure 5,621

RW significantly outperformed all comparison methods when using between 10% and622

35% of the data for training. RW also outperformed most methods when using larger623

quantities of training data. For other training set ratios (e.g., 0.4 and 0.6), RW sig-624

nificantly outperformed all comparison methods (with p < 0.001), with the exception625

of FUS. When the training set ratio was 0.8, FUS was significantly better than RW,626

and RW was significantly better than other methods with p < 0.007. Interestingly,627

when the training set ratio was less than 0.1, the performance difference among RW,628

FUS and PLSA as well as the performance difference between UB and IB were not629

significant. We suspect that this was due to the small proportion of the overall dataset630

used for training; at this setting the training data was simply too sparse to extract631

meaningful recommendation patterns. Overall, the findings suggest that leveraging632

tag information and the transitive associations among users, tags, and items can be633

very beneficial, particularly in situations involving highly sparse data.634

As discussed in Section 3.2.2, the computation of item and user similarities is635

a critical component of the proposed RW method. To understand the impact of636

probability-based similarity versus cosine similarity for the recommendation perfor-637

mance, we evaluated them on three datasets. Table IX summarizes the recommenda-638

tion precisions of these two similarity methods. The methods with names beginning639

with “c” use cosine similarity. As to the bold values in Table IX, we can observe640

that the precision values using cosine similarity are significantly smaller than the641
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Fig. 5. Experimental results at different density levels.

Table IX. Precisions of Two Similarity Methods

Algorithm CiteULike BibSonomy Delicious (small)
RW-IT 14.61 18.93 32.56
cRW-IT 13.99 16.59 22.60
RW-UT 10.71 16.66 25.10
cRW-UT 9.06 16.98 23.53
RW-UI 10.70 16.70 27.99
cRW-UI 8.20 11.70 17.69
RW 15.18 19.97 32.69
cRW 14.55 19.47 29.27

corresponding precision values using probability-based similarity (e.g., 16.59 < 18.93),642

with p < 0.02.643

4.4. Sensitivity of Parameters644

Critical factors to the success of RW are the weighting factors (e.g., α, β, λ, η, and μ), the645

number of iterations q and the tag threshold s. Here, tag threshold is the same as the646

frequency of selected tag in Table III. The functions of the other factors in our model647

are discussed in Section 3.2. This subsection aims to investigate how these parameters648

impact the performance of the proposed algorithm. As the relative performances of649

implemented algorithms are generally consistent across different evaluation metrics,650

we tuned the parameters based on precision here. Note that when we were tuning651

a given parameter, the other parameters were fixed. The following parameter tuning652

experiments were conducted on these four datasets.653

Weighting Factor α. As shown in Figure 6(a), the precision when α surpassed 0.5 was654

higher than the precision where α was less than 0.5. This indicates that the item-tag655

information was more important than the user-item information in the computation of656

item similarity in our model.657

Weighting Factor β and λ. As can be seen in Figures 6(a) and 7(b), all the former658

three performance curves were flat, suggesting that the variations in performance659

were miniscule. This was due to the fact that when we tuned the weighting factor660

β and λ, the weighting factor μ balanced the impact of the user graph and the item661

graph equaled 0.9, 0.7, and 0.9 for the CiteULike, Bibsonomy, and Delicious datasets,662

respectively. Consequently, the contribution of the user graph to the final performance663
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Fig. 6. Sensitivity analysis of parameters α, β, λ, η.

was fairly small irrespective of how the user graph related parameters β and λ were664

changed.665

Weighting Factor η. In Figure 6(d), we can observe that the precision when η666

equaled 0 was lower than the precision when η was between 0 and 0.5. The reason667

was that the item-tag information was unused when η equaled 0. However, when668

η surpassed 0.5, the performance began to decline with subsequent increases in η.669

The results imply that while transitive associations play a critical role in the overall670

performance, excessive usage of these associations can diminish the accuracy of item671

recommendations.672

Weighting Factor μ. As shown in Figure 7(a), the precision when μ surpassed 0.5673

was higher than the precision when μ was less than 0.5. This indicates that the con-674

tribution of the item graph to the final performance was greater than that of the user675

graph.676

Number of Iterations q. Figure 7(b)∼(d) correspond to the experimental results on677

the CiteULike, Bibsonomy and Delicious (small) datasets in turn. It is not significant678

for the variations of the performance of RW-IT and RW-UT with the increase of the679

number of iterations. However, it is obvious for the impact of the number of iterations680

to the performance of RW-UI, and RW reaches the highest value with q ranging from681

4 to 7. This could be due to the fact that the IT and UT matrices were denser than682

the UI matrix. For example, the proportion of nonzero elements in the UI, IT, and683
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Fig. 7. Sensitivity analysis of parameters μ, q, and s.

UT matrices in the CiteULike dataset were 0.010, 0.034, and 0.033, respectively.684

In addition, when q surpassed 6, the performance began to decline with subse-685

quent increases in the value of q. This finding implies that the lengthier multi-step686

transitive associations may not be helpful for the recommendation performance. As687

we discussed in Section 3.1, transitive associations can make the inter-item and inter-688

user similarity measures more accurate, which facilitates the alleviation of sparsity.689

However, considering that lengthier transitive associations are weighted lower, such690
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associations provide limited improvement to the inter-item and inter-user similarity691

measures. Based on the results, while shorter transitive associations are beneficial,692

lengthier multi-step transitive associations do not appear to improve recommendation693

performance.694

Tag Threshold s. As shown in Figure 7(e), the impact of the tag threshold on per-695

formance was small. However, Figure 7(f) shows that the number of tags dramati-696

cally declined as the tag threshold increased. This implies that selecting tag threshold697

that reduces the number of tags can save computational resources, including time and698

space, without having a significant adverse effect on precision.699

5. CONCLUSIONS700

In this study, we proposed a novel random-walk-based recommendation model for701

social tagging systems. This approach can effectively improve the recommendation702

performance and alleviate the data sparsity problem by leveraging the transitive asso-703

ciations among the transaction records available as <user,tag,item> tuples. Further-704

more, an empirical evaluation on three real-world datasets showed that our approach705

outperformed existing methods under sparse data, largely due to its ability to better706

capture the transitive associations between users, items, and tags. Additional experi-707

ments showed that the probability-based similarity mechanism proposed in this study708

outperformed the cosine similarity method commonly adopted in prior work. Through709

sensitivity analyses, we found that user-item, user-tag, and item-tag interaction infor-710

mation had different kinds of impact on recommendation performance.711

Social tagging has become a useful and popular method for organizing and sharing712

information in social media applications. Improving tag-based recommendation can713

alleviate the information overload problem.714

In future research, we plan to incorporate social network information into our model715

and evaluate their impact on recommendation performance, since social network pro-716

vides a valuable resource about the connections between users. We also plan to apply717

other methods (e.g., associative retrieval techniques, network analysis approach etc.)718

[Huang et al. 2004; Wei and Ram 2012] to explore the transitive associations among719

<user,tag,item> transaction data and study the impact of data characteristics on rec-720

ommendation performance in social tagging systems [Adomavicius and Zhang 2012].721

Another research direction is to explore alternatives for implementing the random-722

walk-based model in a Big Data environment. In addition, we hope to evaluate the723

top-N recommendation results of our model against practically-relevant metrics such724

as novelty, diversity, and serendipity [Herlocker et al. 2004], which have begun to725

draw considerable attention in the fields of recommender systems and information726

retrieval.727
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